生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 263-275.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0487
张婷1,2,3(), 万雨欣1,2,3, 徐伟慧1,2,3, 王志刚1,2,3(
), 陈文晶1,2,3, 胡云龙1,2,3
收稿日期:
2024-05-25
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
王志刚,男,博士,教授,研究方向:环境微生物; E-mail: wangzhigang@qqhru.edu.cn作者简介:
张婷,女,硕士研究生,研究方向:环境微生物;E-mail: 2077133351@qq.com基金资助:
ZHANG Ting1,2,3(), WAN Yu-xin1,2,3, XU Wei-hui1,2,3, WANG Zhi-gang1,2,3(
), CHEN Wen-jing1,2,3, HU Yun-long1,2,3
Received:
2024-05-25
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】有益植物根际微生物通过加强土壤与农作物间互作以促进农作物生长。菌株LN01是一株玉米根际促生菌,探究菌株LN01对玉米植株生长的促进机制。【方法】采用16S rRNA和全基因组学测序,明确菌株LN01分类学地位;其次,通过盆栽实验验证菌株LN01对玉米的促生效果,通过全基因组数据挖掘与促生特性相关基因信息并借助碳氮分析仪、钼锑抗比色法、火焰分光光度计、Salkowski比色法、Chrome Azurol Sulfonate(CAS)蓝色定性检测平板研究菌株LN01固氮、溶磷、解钾、产吲哚乙酸(IAA)和铁载体能力。【结果】菌株LN01促进玉米植株生物量累积并有效提高土壤营养成分。经鉴定菌株LN01为Leclercia adecarboxylata,菌株LN01基因组中存在参与铁获取(fhuBCDEF、afuABC、efeOBU和fepCDG)、磷酸盐溶解(pstABCS、phoABER、phnACDEFGHIJKLP和ugpABCE)、生物固氮(nirBCD、nasA、glnA、gltBD和nrtABC)、解钾(kdpABC、kefBCFG、trkAH和kup)的基因簇和IAA生物合成基因簇(trpABSCFRGD)。通过antiSMASH分析,在整个基因组中发现了促进植物生长的4种次级代谢物的生物基因合成簇,包括非核糖体肽合成酶(NRPS)、萜烯、硫肽和芳基多烯。菌株LN01固氮量、磷酸盐溶解活性、解钾能力、IAA产量分别为15.14、58.33、15.6和 42.2 mg/L,并具有产生铁载体能力。【结论】菌株LN01具有固氮溶磷、解钾作用、铁载体生产及IAA分泌相关基因,帮助玉米植株固定营养成分,促进玉米植株发育。
张婷, 万雨欣, 徐伟慧, 王志刚, 陈文晶, 胡云龙. 一株玉米根际促生菌Leclercia adecarboxylata LN01促生效果研究及其基因组分析[J]. 生物技术通报, 2025, 41(1): 263-275.
ZHANG Ting, WAN Yu-xin, XU Wei-hui, WANG Zhi-gang, CHEN Wen-jing, HU Yun-long. Growth-promoting Effects of a Rhizosphere Growth-promoting Bacterium Leclercia adecarboxylata LN01 in Maize Plants and Its Whole-genome Analysis[J]. Biotechnology Bulletin, 2025, 41(1): 263-275.
培养基Medium | 组分Composition/(g·L-1) |
---|---|
NBRIP 培养基[ National Botanical Research Institute's phosphate medium | 葡萄糖10.0,Ca3 (PO4)2 5.0,MgCl2 ·6H2O 0.2, (NH4)2SO4 0.1,琼脂20.0,液体培养基不加琼脂 |
亚历山大罗夫培养基[ Alexandrov medium | 蔗糖5.0,Na2HPO4 2.0,MgSO4 0.5,CaCO3 0.1,FeCl3 0.005,钾长石1.0,溴百里酚蓝(100 mg/L)20 mL,琼脂20.0,pH 7.0 |
解钾液体发酵培养基[ Potassium bacteria medium | 蔗糖10.0,Na2HPO4 1.0,MgSO4 1.0,CaCO3 0.1,FeCl3 0.005,钾长石10.0,(NH4)2SO4 0.5 |
阿须贝无氮培养基[ Ashby’S medium | KH2PO4 0.2,MgSO4 0.2,NaCl 0.2,CaCO3 5.0,甘露醇10.0,CaSO4 0.1,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
牛肉膏蛋白胨培养基[ Nutrient broth medium | 蛋白胨10.0,NaCl 5.0,牛肉膏3.0,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
CAS培养基Chrome azurol sulfonate medium | CAS培养基10.87,琼脂20.0,pH 7.0 |
表1 供试培养基
Table 1 Test medium
培养基Medium | 组分Composition/(g·L-1) |
---|---|
NBRIP 培养基[ National Botanical Research Institute's phosphate medium | 葡萄糖10.0,Ca3 (PO4)2 5.0,MgCl2 ·6H2O 0.2, (NH4)2SO4 0.1,琼脂20.0,液体培养基不加琼脂 |
亚历山大罗夫培养基[ Alexandrov medium | 蔗糖5.0,Na2HPO4 2.0,MgSO4 0.5,CaCO3 0.1,FeCl3 0.005,钾长石1.0,溴百里酚蓝(100 mg/L)20 mL,琼脂20.0,pH 7.0 |
解钾液体发酵培养基[ Potassium bacteria medium | 蔗糖10.0,Na2HPO4 1.0,MgSO4 1.0,CaCO3 0.1,FeCl3 0.005,钾长石10.0,(NH4)2SO4 0.5 |
阿须贝无氮培养基[ Ashby’S medium | KH2PO4 0.2,MgSO4 0.2,NaCl 0.2,CaCO3 5.0,甘露醇10.0,CaSO4 0.1,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
牛肉膏蛋白胨培养基[ Nutrient broth medium | 蛋白胨10.0,NaCl 5.0,牛肉膏3.0,琼脂20.0,pH 7.0,液体培养基不加琼脂 |
CAS培养基Chrome azurol sulfonate medium | CAS培养基10.87,琼脂20.0,pH 7.0 |
图2 菌株LN01对玉米幼苗的促生效应及综合能力评价 A: 不同处理下的14日龄玉米幼苗;B: 生物量;C: 株高;D: 茎粗;E: 土壤全氮;F: 土壤有效磷;G: 土壤有效钾
Fig. 2 Evaluation of the growth-promoting effect and comprehensive ability of strain LN01 on maize seedlings A: 14-day-old maize seedlings under different treatments; B: biomass; C: plant height; D: thick stem; E: soil total nitrogen; F: soil available phosphorus; G: soil available potassium. The different lowercase letters indicate significant differences among treatments(P<0.05). The same below
菌株LN01特征 Characteristics of LN01 | 数值 Value |
---|---|
Genome size/bp | 5 379 004 |
GC content/% | 55.1 |
Chromosome | 1 |
Plasmid | 6 |
tRNA | 87 |
rRNA(5S, 16S, 23S) | 25 |
Protein-coding genes(CDS) | 5 004 |
Genomic islands | 14 |
Secondary metabolite gene clusters | 4 |
Genes assigned to NR | 4 873 |
Genes assigned to COGs | 4 085 |
Genes assigned to GO | 2 793 |
Genes assigned to KEGG | 3 285 |
Genes assigned to Pfam | 4 400 |
Genes assigned to Swiss-Prot | 4 219 |
表2 菌株LN01的基因组信息
Table 2 Genome characteristics of strain LN01
菌株LN01特征 Characteristics of LN01 | 数值 Value |
---|---|
Genome size/bp | 5 379 004 |
GC content/% | 55.1 |
Chromosome | 1 |
Plasmid | 6 |
tRNA | 87 |
rRNA(5S, 16S, 23S) | 25 |
Protein-coding genes(CDS) | 5 004 |
Genomic islands | 14 |
Secondary metabolite gene clusters | 4 |
Genes assigned to NR | 4 873 |
Genes assigned to COGs | 4 085 |
Genes assigned to GO | 2 793 |
Genes assigned to KEGG | 3 285 |
Genes assigned to Pfam | 4 400 |
Genes assigned to Swiss-Prot | 4 219 |
图3 菌株LN01 基因组图谱及COG功能注释注释 A: 基因组图谱;B: 基因组COG 功能注释
Fig. 3 Genomic mapping and COG functional annotation of strain LN01 A: Genomic mapping; B: genomic COG functional annotation
图4 菌株LN01基因组功能注释及通路注释 A: 基因组GO 功能注释;B: KEGG 通路注释
Fig. 4 Genome functional and pathway annotation of strain LN01 A: Genomic GO functional annotation; B: KEGG pathway annotation
促生特性 PGP traits | 基因 Gene |
---|---|
IAA | trpA trpB trpS trpCF trpR trpGD ipdC amiE patB |
Potassium solubilization and uptake | kdpA kdpB kdpC kefB kefC kefF kefG trkA trkH kup |
Siderophore | tonB exbB fhuB fhuC fhuD fhuE fhuF efeO efeB efeU fepD fepG fepC ftsB afuB afuC afuA |
Nitrogen generation | glnG nirB nirC nirD nasA nrtA nrtB nrtC nrtB nasA nirA glnA gltB gltD |
Phosphate solubilization and uptake | pstS pstC pstA pstB phnA phnC phnD phnE phnF phnG phnH phnI phnJ phnK phnL phnN phnP phoA phoB phoE phoR ugpA ugpB ugpC ugpE |
表3 预测LN01基因组中与PGP相关的基因
Table 3 Predicted genes associated with PGP in LN01 genome
促生特性 PGP traits | 基因 Gene |
---|---|
IAA | trpA trpB trpS trpCF trpR trpGD ipdC amiE patB |
Potassium solubilization and uptake | kdpA kdpB kdpC kefB kefC kefF kefG trkA trkH kup |
Siderophore | tonB exbB fhuB fhuC fhuD fhuE fhuF efeO efeB efeU fepD fepG fepC ftsB afuB afuC afuA |
Nitrogen generation | glnG nirB nirC nirD nasA nrtA nrtB nrtC nrtB nasA nirA glnA gltB gltD |
Phosphate solubilization and uptake | pstS pstC pstA pstB phnA phnC phnD phnE phnF phnG phnH phnI phnJ phnK phnL phnN phnP phoA phoB phoE phoR ugpA ugpB ugpC ugpE |
图7 菌株LN01的促生功能定量及定性测定 A: 产铁载体及固氮能力定性结果;B: 解磷及解钾定性结果;C: 菌株发酵液中总氮含量;D: 可溶性钾含量。* 表示与对照组相比差异显著(P<0.05),**P<0.01,***P<0.001,****P<0.000 1
Fig. 7 Quantitative and qualitative determination of the growth-promoting function of strain LN01 A: Qualitative results of iron production carrier and nitrogen fixation capacity.B: Qualitative results of phosphorus and potassium solubilization. C: Total nitrogen content in fermentation broth of the strains. D: Soluble potassium content. * denotes significant difference(P<0.05)compared with the control, ** P<0.01, *** P<0.001, and ****denotes P<0.000 1
菌株 Strain | 定性结果 Qualitative result | 吸光值 Optical density | 产率 Productive rate/(mg·L-1) |
---|---|---|---|
LN01 | IAA(+) | OD530nm =0.061 3 | 42.200 |
溶磷(+) | OD700nm =1.762 0 | 58.329 |
表4 菌株分泌IAA 及溶磷能力定性检测结果和定量检测数据
Table 4 Qualitative and quantitative detection of IAA secretion and phosphorus dissolution
菌株 Strain | 定性结果 Qualitative result | 吸光值 Optical density | 产率 Productive rate/(mg·L-1) |
---|---|---|---|
LN01 | IAA(+) | OD530nm =0.061 3 | 42.200 |
溶磷(+) | OD700nm =1.762 0 | 58.329 |
[1] | 王冬梅. 玉米种植现状与新技术应用的效率分析[J]. 世界热带农业信息, 2023(4): 7-9. |
Wang DM. Analysis on the present situation of maize planting and the efficiency of new technology application[J]. World Trop Agric Inf, 2023(4): 7-9. | |
[2] | 中国农业科学院作物科学研究所. 中国农科院实施“增粮科技行动”[J]. 中国农业综合开发, 2022,(6): 39. |
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. The Chinese Academy of Agricultural Sciences(CASA)implements the “Grain Enhancement Science and Technology Initiative”[J]. Agricultural Comprehensive Development in China, 2022,(6): 39. | |
[3] | 勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2023, 29(2): 495-506. |
Gou YC, Wang ZK, Zhang ZP, et al. Advance in role mechanisms of plant growth-promoting rhizobacteria[J]. Chin J Appl Environ Biol, 2023, 29(2): 495-506. | |
[4] |
Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annu Rev Microbiol, 2001, 55: 485-529.
pmid: 11544365 |
[5] | 周益帆, 白寅霜, 岳童, 等. 植物根际促生菌促生特性研究进展[J]. 微生物学通报, 2023, 50(2): 644-666. |
Zhou YF, Bai YS, Yue T, et al. Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria[J]. Microbiol China, 2023, 50(2): 644-666. | |
[6] | Basu A, Prasad P, Das SN, et al. Plant growth promoting rhizobacteria(PGPR)as green bioinoculants: recent developments, constraints, and prospects[J]. Sustainability, 2021, 13(3): 1140. |
[7] | Chen YH, Li SS, Liu N, et al. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environ Sci Pollut Res Int, 2021, 28(18): 23036-23047. |
[8] | Zhai ZG, Hu QL, Chen JR, et al. Effects of combined application of organic fertilizer and microbial agents on tobacco soil and tobacco agronomic traits[J]. IOP Conf Ser: Earth Environ Sci, 2020, 594(1): 012023. |
[9] | Das PP, Singh KR, Nagpure G, et al. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices[J]. Environ Res, 2022, 214(Pt 1): 113821. |
[10] |
Galperin MY, Kristensen DM, Makarova KS, et al. Microbial genome analysis: the COG approach[J]. Brief Bioinform, 2019, 20(4): 1063-1070.
doi: 10.1093/bib/bbx117 pmid: 28968633 |
[11] | 余世铭. 垦粘一号与垦粘二号玉米[J]. 作物品种资源, 1993(4): 21. |
Yu SM. Kenzhan 1 and Kenzhan 2 corn[J]. China Seed Ind, 1993(4): 21. | |
[12] |
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol Lett, 1999, 170(1): 265-270.
doi: 10.1111/j.1574-6968.1999.tb13383.x pmid: 9919677 |
[13] | 李凤汀, 郝正然, 杨则瑗, 等. 硅酸盐细菌HM8841菌株解钾作用的研究[J]. 微生物学报, 1997, 37(1): 79-81. |
Li FT, Hao ZR, Yang ZY, et al. Studies on the ability of silicate bacteria HM8841 strain dissolving potassium[J]. Acta Microbiol Sin, 1997, 37(1): 79-81. | |
[14] | 王珣珏, 黄巧云, 蔡鹏, 等. 解钾菌解钾效率检测方法的比较[J]. 华中农业大学学报, 2016, 35(1): 81-85. |
Wang XJ, Huang QY, Cai P, et al. Comparing different methods of detecting potassium solubilizing efficiency with potassium solubilizing bacteria[J]. J Huazhong Agric Univ, 2016, 35(1): 81-85. | |
[15] | Ben Abdallah D, Frikha-Gargouri O, Tounsi S. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a[J]. Biol Contr, 2018, 124: 61-67. |
[16] | 沈萍, 陈向东. 微生物学实验(第4版)[M]. 北京: 高等教育出版社, 2007. |
Shen P, Chen XD. Laboratory Microbiology[M]. 4th ed. Beijing: Higer Education Press, 2007. | |
[17] | Niu B, Kolter R. Quantification of the composition dynamics of a maize root-associated simplified bacterial community and evaluation of its biological control effect[J]. Bio Protoc, 2018, 8(12): e2885. |
[18] | 张韫. 土壤·水·植物理化分析教程[M]. 北京: 中国林业出版社, 2011. |
Zhang Y. Course of soil, water and plant physical and chemical analysis[M]. Beijing: China Forestry Publishing House, 2011. | |
[19] | 吴玥, 王秋颖, 关体坤, 等. 磷铁尾矿中高效解磷菌筛选、鉴定及解磷特性[J]. 北京农学院学报, 2022, 37(4): 6-12. |
Wu Y, Wang QY, Guan TK, et al. Isolation, identification and phosphate solubilizing characteristics of a phosphate solubilizing bacterium from ferrophosphate tailings[J]. J Beijing Univ Agric, 2022, 37(4): 6-12. | |
[20] | 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985. |
Department of Microbiology, Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil microorganism research method[M]. Beijing: Science Press, 1985. | |
[21] | Rajawat MVS, Singh S, Tyagi SP, et al. A modified plate assay for rapid screening of potassium-solubilizing bacteria[J]. Pedosphere, 2016, 26(5): 768-73. |
[22] |
李福艳, 刘晓玉, 颜静婷, 等. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-84.
doi: 10.3969/j.issn.1004-1524.2021.05.13 |
Li FY, Liu XY, Yan JT, et al. Screening and identification of three indoleacetic acid-producing rhizosphere Bacillus and their growth-promoting effects[J]. Journal of Zhejiang Agricultural Sciences, 2021, 33(5): 873-84. | |
[23] | 刘雪娇, 李红亚, 李术娜, 等. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报: 自然科学版, 2019, 39(3): 302-310. |
Liu XJ, Li HY, Li SN, et al. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. J Hebei Univ Nat Sci Ed, 2019, 39(3): 302-310. | |
[24] | 王宝杰. 内蒙古草原葱属植物根际土壤功能菌筛选及其对燕麦的促生作用[D]. 呼和浩特: 内蒙古大学, 2021. |
Wang BJ. Screening of functional bacteria in rhizosphere soil of Allium plants in Inner Mongolia grassland and its growth promotion effect on oats[D]. Hohhot: Inner Mongolia University, 2021. | |
[25] | 王卫星, 周晓伦, 李忠玲, 等. CAS平板覆盖法检测氢氧化细菌铁载体[J]. 微生物学通报, 2014, 41(8): 1692-1697. |
Wang WX, Zhou XL, Li ZL, et al. Detection of siderophore production from hydrogen-oxidizing bacteria with CAS overlay plate method[J]. Microbiol China, 2014, 41(8): 1692-1697. | |
[26] |
Fitzpatrick CR, Salas-González I, Conway JM, et al. The plant microbiome: from ecology to reductionism and beyond[J]. Annu Rev Microbiol, 2020, 74: 81-100.
doi: 10.1146/annurev-micro-022620-014327 pmid: 32530732 |
[27] | Sun XL, Xu ZH, Xie JY, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. ISME J, 2022, 16(3): 774-787. |
[28] |
Zhang XC, Dippold MA, Kuzyakov Y, et al. Spatial pattern of enzyme activities depends on root exudate composition[J]. Soil Biol Biochem, 2019, 133: 83-93.
doi: 10.1016/j.soilbio.2019.02.010 |
[29] | Wang SS, Wang JB, Zhou YF, et al. Isolation, classification, and growth-promoting effects of Pantoea sp. YSD J2 from the aboveground leaves of Cyperus Esculentus L. var. sativus[J]. Curr Microbiol, 2022, 79(2): 66. |
[30] | Ali S, Charles TC, Glick BR. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase[J]. Plant Physiol Biochem, 2014, 80: 160-167. |
[31] | Yoon SH, Ha SM, Lim J, et al. A large-scale evaluation of algorithms to calculate average nucleotide identity[J]. Antonie Van Leeuwenhoek, 2017, 110(10): 1281-1286. |
[32] | Li XX, Liu Q, Liu XM, et al. Using synthetic biology to increase nitrogenase activity[J]. Microb Cell Fact, 2016, 15: 43. |
[33] |
Nordlund S, Högbom M. ADP-ribosylation, a mechanism regulating nitrogenase activity[J]. FEBS J, 2013, 280(15): 3484-3490.
doi: 10.1111/febs.12279 pmid: 23574616 |
[34] | 张鹏, 王龙, 谢明杰. PstS和PstB调控无机磷酸盐转运和介导细菌耐药的机制[J]. 微生物学报, 2019, 59(8): 1429-1436. |
Zhang P, Wang L, Xie MJ. Regulating inorganic phosphate transport and mediating bacterial resistance by PstS and PstB[J]. Acta Microbiol Sin, 2019, 59(8): 1429-1436. | |
[35] | 盛下放, 黄为一. 硅酸盐细菌NBT菌株解钾机理初探[J]. 土壤学报, 2002, 39(6): 863-871. |
Sheng XF, Huang WY. Mechanism of potassium release from feldspar affected by the strain nbt of silicate bacterium[J]. Acta Pedol Sin, 2002, 39(6): 863-871. | |
[36] | Epstein W, Buurman E, McLaggan D, et al. Multiple mechanisms, roles and controls of K+ transport in Escherichia coli[J]. Biochem Soc Trans, 1993, 21(4): 1006-1010. |
[37] | Garzón-Posse F, Quevedo-Acosta Y, Mahecha-Mahecha C, et al. Recent progress in the synthesis of naturally occurring siderophores[J]. Eur J Org Chem, 2019, 2019(48): 7747-7769. |
[38] | Kang SM, Shahzad R, Khan MA, et al. Ameliorative effect of indole-3-acetic acid- and siderophore-producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress[J]. J Plant Interact, 2021, 16(1): 30-41. |
[39] | Kumawat KC, Sharma P, Singh I, et al. Co-existence of Leclercia adecarboxylata(LSE-1)and Bradyrhizobium sp.(LSBR-3)in nodule niche for multifaceted effects and profitability in soybean production[J]. World J Microbiol Biotechnol, 2019, 35(11): 172. |
[40] | Ashrafuzzaman M, Hossen FA, Razi Ismail UM, et al. Efficiency of plant growth-promoting rhizobacteria(PGPR)for the enhancement of rice growth[J]. Afr J Biotechnol, 2009, 8(7): 1247-1252. |
[41] | Taghavi S, van der Lelie D, Hoffman A, et al. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638[J]. PLoS Genet, 2010, 6(5): e1000943. |
[42] | Coulson TJD, Patten CL. Complete genome sequence of Enterobacter cloacae UW5, a rhizobacterium capable of high levels of indole-3-acetic acid production[J]. Genome Announc, 2015, 3(4): e00843-15. |
[43] | Guo DJ, Singh RK, Singh P, et al. Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root[J]. Front Microbiol, 2020, 11: 580081. |
[44] |
Ghazy N, El-Nahrawy S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant[J]. Arch Microbiol, 2021, 203(3): 1195-1209.
doi: 10.1007/s00203-020-02113-5 pmid: 33231747 |
[45] | Liu RF, Zhang Y, Chen P, et al. Genomic and phenotypic analyses of Pseudomonas psychrotolerans PRS08-11306 reveal a turnerbactin biosynthesis gene cluster that contributes to nitrogen fixation[J]. J Biotechnol, 2017, 253: 10-13. |
[46] | Han AW, Sandy M, Fishman B, et al. Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901[J]. PLoS One, 2013, 8(10): e76151. |
[47] | Sedkova N, Tao L, Rouvière PE, et al. Diversity of carotenoid synt-hesis gene clusters from environmental Enterobacteriaceae strai-ns[J]. Appl Environ Microbiol, 2005, 71(12): 8141-8146. |
[48] | Jones CV, Jarboe BG, Majer HM, et al. Escherichia coli nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk[J]. Appl Microbiol Biotechnol, 2021, 105(20): 7785-7799. |
[1] | 刘克寒, 杨升辉, 黄巧云, 崔文靖. 黑龙江大豆根瘤菌及根际促共生菌株的筛选及应用[J]. 生物技术通报, 2025, 41(1): 252-262. |
[2] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[3] | 周江鸿, 夏菲, 仲丽, 仇兰芬, 李广, 刘倩, 张国锋, 邵金丽, 李娜, 车少臣. 黄栌枯萎病拮抗细菌CCBC3-3-1的全基因组测序及比较基因组分析[J]. 生物技术通报, 2024, 40(7): 235-246. |
[4] | 田彤彤, 葛家振, 高鹏程, 李学瑞, 宋国栋, 郑福英, 储岳峰. 绵羊肺炎支原体GH3-3株全基因组测序及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 323-334. |
[5] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
[6] | 王梓, 石金川, 王永强, 孙淼, 孟令浩, 耿超, 刘锴. 牛源荚膜A型、D型多杀性巴氏杆菌的全基因组测序及基因组进化分析[J]. 生物技术通报, 2024, 40(12): 282-290. |
[7] | 李希, 边子俊, 宁周神, 刘红雨, 曾槟, 董伟. 离子型稀土矿根际芽孢杆菌的促生作用研究[J]. 生物技术通报, 2024, 40(11): 259-268. |
[8] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[9] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[10] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[11] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[12] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[13] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
[14] | 张傲洁, 李青云, 宋文红, 颜少慧, 唐爱星, 刘幽燕. 基于苯酚降解的粪产碱杆菌Alcaligenes faecalis JF101的全基因组分析[J]. 生物技术通报, 2023, 39(10): 292-303. |
[15] | 王帅, 吕鸿睿, 张昊, 吴占文, 肖翠红, 孙冬梅. 解磷菌PSB-R全基因组测序鉴定及其解磷特性分析[J]. 生物技术通报, 2023, 39(1): 274-283. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||