生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 139-149.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0584
• 研究报告 • 上一篇
刘芳1,2(), 杜芊芊1, 何昊1, 肖钢3, 晏仲元1(
), 郝小花1(
)
收稿日期:
2024-06-17
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
晏仲元,男,博士,讲师,研究方向 :生物信息学;E-mail: 7637188893@qq.com作者简介:
刘芳,女,博士,讲师,研究方向 :油菜分子育种,重金属胁迫机理;E-mail: g5n2a5f@163.com
基金资助:
LIU Fang1,2(), DU Qian-qian1, HE Hao1, XIAO Gang3, YAN Zhong-yuan1(
), HAO Xiao-hua1(
)
Received:
2024-06-17
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 探究基于miRNA调控甘蓝型油菜BnMSH7.A1响应Cu2+胁迫的作用机理,为解析重金属胁迫响应机制中 miRNA的调控功能提供新的研究思路。 方法 通过克隆甘蓝型油菜BnMSH7基因,利用生物信息学方法进行序列特征及潜在功能分析,预测筛选出调控甘蓝型油菜BnMSH7基因的候选miRNA,并使用烟草双荧光素酶报告系统对其进行体外验证,过表达pre-miR172b和pre-miR172c侵染油菜子叶,进行体内验证。经不同浓度Cu2+处理油菜幼苗,RT-qPCR检测miR172b、miR172c和BnMSH7.A1表达情况,进行相关分析,推断Cu2+胁迫下,miR172b和miR172c对BnMSH7.A1的调控情况。 结果 野生型萤火虫荧光值与海肾荧光值比值比空白对照显著下降,说明BnMSH7.A1受miR172b和miR172c调控。同时体内验证发现miR172b和miR172c与BnMSH7.A1的表达规律相反,表现为抑制调控,进一步说明miR172b和miR172c可以调控BnMSH7.A1。经生物信息学预测发现,miR172b、miR172c和BnMSH7.A1启动子上均存在铜响应元件;且Cu2+处理后,根中pre-miR172b和pre-miR172c分别可以促进miR172b和miR172c表达,进一步促进BnMSH7.A1表达。叶中miR172b和miR172c负向调控BnMSH7.A1的表达,pre-miR172b、pre-miR172c与miR172b、miR172c呈负相关关系,但相关性不显著。 结论 在不同组织中miR172b/c-BnMSH7.A1模块的调控方式存在差异,在根中pre-miR172b、pre-miR172c与miR172b、miR172c均为正相关关系,miR172b/c可正向调控BnMSH7.A1表达。在叶中pre-miR172b、pre-miR172c与miR172b/c相关性不显著,但miR172b/c可负向调控BnMSH7.A1的表达。
刘芳, 杜芊芊, 何昊, 肖钢, 晏仲元, 郝小花. miR172b/c-BnMSH7.A1模块响应甘蓝型油菜中Cu2+胁迫机制[J]. 生物技术通报, 2025, 41(2): 139-149.
LIU Fang, DU Qian-qian, HE Hao, XIAO Gang, YAN Zhong-yuan, HAO Xiao-hua. Mechanism of miR172b/c-BnMSH7.A1 Module Responding to Cu 2+ Stress in Brassica napus[J]. Biotechnology Bulletin, 2025, 41(2): 139-149.
引物名称 Primer name | 正向引物 Forward primer (5′-3′) | 反向引物 Reward primer (5′-3′) | 用途 Purpose |
---|---|---|---|
DL-MSH7A1 | CGTCGCAAGCTACTCAGCGT | CACATTTCGCTCCACAGAG C | RT-qPCR检测BnMSH7.A1表达量 Detect the expression level of BnMSH7.A1 by RT-qPCR |
DL-MSH7C1 | GAAACCGTCGCAAGCTTCAG | CATTTCGCTCCACAGAG | RT-qPCR检测BnMSH7.C1表达量 Detect the expression level of BnMSH7.C1 by RT-qPCR |
DLpre-miR172b | TGGCTTTCTGAATCCTCTTCC | GATGCTGCATCTGCAACTACC | RT-qPCR检测pre-miR172b表达量 Detect the expression level of pre-miR172b by RT-qPCR |
DLpre-miR172c | GCCGGTAGTTGCAGATGC | GCTGATGCAGCATCATCAAG | RT-qPCR检测miR172c前体表达量 Detect the expression level of pre-miR172c by RT-qPCR |
Actin | CTGGTGATGGTGTGTCTCACAC | GTTGTCTCATGGATTCCAGGAG | 内参基因 Reference gene |
DLmiR172b/c | GGAATCTTGATGATGCTGCAT | 随机引物Random primer | RT-qPCR检测miR172b/c表达量 Detect the expression level of miR172b/c by RT-qPCR |
U6 | CGATAAAATTGGAACGATACAGA | ATTTGGACCATTTCTCGATTTGT | 内参基因 Reference gene |
G172b | CCG | G | 克隆pre-miR172b序列并构建过表达载体 Clone the pre-miR172b sequence and construct over-expression vector |
G172c | CCG | G | 克隆pre-miR172c序列并构建过表达载体 Clone the pre-miR172c sequence and construct over-expression vector |
表1 文中所用引物
Table 1 Primers used in this article
引物名称 Primer name | 正向引物 Forward primer (5′-3′) | 反向引物 Reward primer (5′-3′) | 用途 Purpose |
---|---|---|---|
DL-MSH7A1 | CGTCGCAAGCTACTCAGCGT | CACATTTCGCTCCACAGAG C | RT-qPCR检测BnMSH7.A1表达量 Detect the expression level of BnMSH7.A1 by RT-qPCR |
DL-MSH7C1 | GAAACCGTCGCAAGCTTCAG | CATTTCGCTCCACAGAG | RT-qPCR检测BnMSH7.C1表达量 Detect the expression level of BnMSH7.C1 by RT-qPCR |
DLpre-miR172b | TGGCTTTCTGAATCCTCTTCC | GATGCTGCATCTGCAACTACC | RT-qPCR检测pre-miR172b表达量 Detect the expression level of pre-miR172b by RT-qPCR |
DLpre-miR172c | GCCGGTAGTTGCAGATGC | GCTGATGCAGCATCATCAAG | RT-qPCR检测miR172c前体表达量 Detect the expression level of pre-miR172c by RT-qPCR |
Actin | CTGGTGATGGTGTGTCTCACAC | GTTGTCTCATGGATTCCAGGAG | 内参基因 Reference gene |
DLmiR172b/c | GGAATCTTGATGATGCTGCAT | 随机引物Random primer | RT-qPCR检测miR172b/c表达量 Detect the expression level of miR172b/c by RT-qPCR |
U6 | CGATAAAATTGGAACGATACAGA | ATTTGGACCATTTCTCGATTTGT | 内参基因 Reference gene |
G172b | CCG | G | 克隆pre-miR172b序列并构建过表达载体 Clone the pre-miR172b sequence and construct over-expression vector |
G172c | CCG | G | 克隆pre-miR172c序列并构建过表达载体 Clone the pre-miR172c sequence and construct over-expression vector |
图1 BnMSH7与AtMSH7序列比对分析结果A:蛋白序列比对结果;B:结构域分析
Fig. 1 Analysis results of sequence alignment between BnMSH7 and AtMSH7A: Protein sequence alignment results. B: Analysis of structural domains
图3 BnMSH7.A1与miR172b/c的配对及双荧光素酶验证结果A:预测到的 BnMSH7.A1与miR172b/c的配对位点;B:双荧光素酶实验验证miR172b/c与BnMSH7.A1互作关系;*P<0.05,**P<0.01。下同
Fig. 3 Pairing of BnMSH7.A1 with miR172b/c and double luciferase validation resultsA: The predicted pairing sites between BnMSH7.A1 and miR172b/c. B: Validation of the interaction between miR172b/c and BnMSH7.A1 using dual-luciferase assay. *P<0.05, **P<0.01. The same below
图4 过表达后BnMSH7.A1和miR172b/c表达情况A:过表达pre-miR172b和pre-miR172c后,油菜子叶中BnMSH7.A1的表达变化;B:过表达pre-miR172b和pre-miR172c后,油菜子叶中miR172b和miR172c的表达变化
Fig. 4 Expressions of BnMSH7.A1 and miR172b/c after over-expressionA: Expression variation of BnMSH7.A1 in rape cotyledons after the over expression of pre-miR172b or pre-miR172c. B: Expression variation of miR172b and miR172c in rape cotyledons after the over expression of pre-miR172b or pre-miR172c
图6 不同浓度Cu2+处理后miR172b/c和BnMSH7.A1表达水平分析
Fig. 6 Analysis of expressions of miR172b/c and BnMSH7.A1 after treatment with different concentrations of Cu2+
相关性 Correlation | 根 Root | 叶 Leaf | |||
---|---|---|---|---|---|
r | P | r | P | ||
Pre-miR172b:miR172b | 0.61 | 0.02 | -0.45 | 0.02 | |
Pre-miR172c:miR172c | 0.73 | 0.03 | -0.31 | 0.04 | |
miR172b/c:BnMSH7.A1 | 0.52 | 0 | -0.78 | 0.04 |
表2 相关性分析
Table 2 Correlation analysis
相关性 Correlation | 根 Root | 叶 Leaf | |||
---|---|---|---|---|---|
r | P | r | P | ||
Pre-miR172b:miR172b | 0.61 | 0.02 | -0.45 | 0.02 | |
Pre-miR172c:miR172c | 0.73 | 0.03 | -0.31 | 0.04 | |
miR172b/c:BnMSH7.A1 | 0.52 | 0 | -0.78 | 0.04 |
图8 不同浓度Cu2+处理后pre-miR172b和pre-miR172c表达水平分析
Fig. 8 Analysis of expressions of pre-miR172b and pre-miR172c after treatment with different concentrations of Cu2+
1 | Filipič M. Mechanisms of cadmium induced genomic instability [J]. Mutat Res, 2012, 733(1/2): 69-77. |
2 | Wang HT, He L, Song J, et al. Cadmium-induced genomic instability in Arabidopsis: molecular toxicological biomarkers for early diagnosis of cadmium stress [J]. Chemosphere, 2016, 150: 258-265. |
3 | Cui WN, Wang HT, Song J, et al. Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips [J]. Ecotoxicol Environ Saf, 2017, 145: 569-574. |
4 | Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways [J]. J Cell Physiol, 2002, 191(1): 28-41. |
5 | Golubov A, Yao YL, Maheshwari P, et al. Microsatellite instability in Arabidopsis increases with plant development [J]. Plant Physiol, 2010, 154(3): 1415-1427. |
6 | Dzantiev L, Constantin N, Genschel J, et al. A defined human system that supports bidirectional mismatch-provoked excision [J]. Mol Cell, 2004, 15(1): 31-41. |
7 | Gomez RL, Galles C, Spampinato CP. High-level production of MSH2 from Arabidopsis thaliana: a DNA mismatch repair system key subunit [J]. Mol Biotechnol, 2011, 47(2): 120-129. |
8 | Culligan KM, Hays JB. Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA [J]. Plant Cell, 2000, 12(6): 991-1002. |
9 | Guo ML, Gao WX, Yu XJ, et al. Data mining of Arabidopsis thaliana salt-response proteins based on bioinformatics analysis [J]. Plant OMICS, 2012, 5(2): 75-78. |
10 | Chirinos-Arias MC, Spampinato CP. Role of the mismatch repair protein MSH7 in Arabidopsis adaptation to acute salt stress [J]. Plant Physiol Biochem, 2021, 169: 280-290. |
11 | 孙晓霞, 宋有涛, 李照令, 等. Cu胁迫对拟南芥幼苗错配修复基因表达的影响 [J]. 生态学杂志, 2013, 32(8): 1973-1979. |
Sun XX, Song YT, Li ZL, et al. Effects of copper stress on the expression of DNA mismatch repair genes in Arabidopsis thaliana plantlets [J]. Chin J Ecol, 2013, 32(8): 1973-1979. | |
12 | 张幸媛, 田宇豪, 秦玉芝, 等. miR169在植物生长发育与非生物胁迫响应中的作用 [J]. 植物遗传资源学报, 2021, 22(4): 900-909. |
Zhang XY, Tian YH, Qin YZ, et al. The role of miR169 family members in the processes of growth, development and abiotic stress response in planta [J]. J Plant Genet Resour, 2021, 22(4): 900-909. | |
13 | Orangi E, Motovali-Bashi M. Evaluation of miRNA-9 and miRNA-34a as potential biomarkers for diagnosis of breast cancer in Iranian women [J]. Gene, 2019, 687: 272-279. |
14 | Ye L, Jiang T, Shao HZ, et al. MiR-1290 is a biomarker in DNA-mismatch-repair-deficient colon cancer and promotes resistance to 5-fluorouracil by directly targeting hMSH2 [J]. Mol Ther Nucleic Acids, 2017, 7: 453-464. |
15 | Zhou ZS, Song JB, Yang ZM. Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium [J]. J Exp Bot, 2012, 63(12): 4597-4613. |
16 | Budak H, Kantar M, Bulut R, et al. Stress responsive miRNAs and isomiRs in cereals [J]. Plant Sci, 2015, 235: 1-13. |
17 | Ding YF, Zhu C. The role of microRNAs in copper and cadmium homeostasis [J]. Biochem Biophys Res Commun, 2009, 386(1): 6-10. |
18 | Ding YF, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa) [J]. J Exp Bot, 2011, 62(10): 3563-3573. |
19 | Qiu ZB, Hai BZ, Guo JL, et al. Characterization of wheat miRNAs and their target genes responsive to cadmium stress [J]. Plant Physiol Biochem, 2016, 101: 60-67. |
20 | 成智博, 王鹤潼, 赵强, 等. 拟南芥miRNA172b-5p、miRNA172e-5p和miRNA472-3p靶向MSH6基因参与Cd应激响应 [J]. 生态学杂志, 2019, 38(12): 3738-3746. |
Cheng ZB, Wang HT, Zhao Q, et al. MiRNA172b-5p, miRNA172e-5p and miRNA472-3p responded to Cd stress by targeting MSH6 gene in Arabidopsis thaliana [J]. Chin J Ecol, 2019, 38(12): 3738-3746. | |
21 | Liu QK, Axtell MJ. Quantitating plant microRNA-mediated target repression using a dual-luciferase transient expression system [J]. Methods Mol Biol, 2015, 1284: 287-303. |
22 | 谭小力, 诸葛锐军, 李冠英, 等. 农杆菌介导的油菜子叶瞬时表达 [J]. 生物学杂志, 2012, 29(6): 93-96. |
Tan XL, Zhuge RJ, Li GY, et al. An agrobacterium-mediated transit transformation system in Brassica napus cotyledon [J]. J Microbiol, 2012, 29(6): 93-96. | |
23 | 宋玉芳, 许华夏, 任丽萍, 等. 重金属对西红柿种子发芽与根伸长的抑制效应 [J]. 中国环境科学, 2001, 21(5): 390-394. |
Song YF, Xu HX, Ren LP, et al. Inhibition effect of heavy metals in soil on the inhibition of seed germination and root elongation of tomatoes [J]. China Environ Sci, 2001, 21(5): 390-394. | |
24 | Chirinos-Arias MC, Spampinato CP. Growth and development of AtMSH7 mutants in Arabidopsis thaliana [J]. Plant Physiol Biochem, 2020, 146: 329-336. |
25 | Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology [J]. Annu Rev Biochem, 1996, 65: 101-133. |
26 | Umar A, Buermeyer AB, Simon JA, et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis [J]. Cell, 1996, 87(1): 65-73. |
27 | Wu S, Culligan K, Lamers M, et al. Dissimilar mispair-recognition spectra of Arabidopsis DNA-mismatch-repair proteins MSH2·MSH6 (MutSα) and MSH2·MSH7 (MutSγ) [J]. Nucleic Acids Res, 2003, 31(20): 6027-6034. |
28 | Sugawara N, Pâques F, Colaiácovo M, et al. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination [J]. Proc Natl Acad Sci USA, 1997, 94(17): 9214-9219. |
29 | Horwath M, Kramer W, Kunze R. Structure and expression of the Zea mays mutS-homologs Mus1 and Mus2 [J]. Theor Appl Genet, 2002, 105(2/3): 423-430. |
30 | Tam SM, Samipak S, Britt A, et al. Characterization and comparative sequence analysis of the DNA mismatch repair MSH2 and MSH7 genes from tomato [J]. Genetica, 2009, 137(3): 341-354. |
31 | Cao X, Wang HT, Zhuang DF, et al. Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots [J]. Chemosphere, 2018, 201: 586-594. |
32 | 张柳伟. miR395调节油菜(Brassica napus)耐镉功能的研究 [D]. 南京: 南京农业大学, 2012. |
Zhang LW. Study on the regulation of miR395 on cadmium tolerance of Brassica napus [D]. Nanjing: Nanjing Agricultural University, 2012. | |
33 | 肖莉, 刘春, 向世鹏, 等. microRNAs在植物响应金属毒性中的作用 [J]. 衡阳师范学院学报, 2013, 34(3): 113-117. |
Xiao L, Liu C, Xiang SP, et al. The role of microRNAs in plant response to metal toxicity [J]. J Hengyang Norm Univ, 2013, 34(3): 113-117. |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 任丽, 乔舒婷, 葛晨辉, 魏梓桐, 徐晨曦. 菠菜PSY基因家族的鉴定与表达分析[J]. 生物技术通报, 2023, 39(12): 169-178. |
[3] | 李爱国, 李积铭, 李和平, 刘桂华, 宋聪敏, 武军艳. 适宜河北省旱寒区的冬油菜品种的筛选[J]. 生物技术通报, 2020, 36(1): 95-100. |
[4] | 王雪寒, 马强, 田媛, 胡靖, 刘惠荣. 内蒙古呼伦贝尔地区的可培养黏细菌及其抗菌活性[J]. 生物技术通报, 2019, 35(9): 224-233. |
[5] | 吉米拉木·加马力, 古海尼沙·买买提, 柔鲜古丽·乃再尔, 帕孜来提·拜合提. 三种地卷响应Cu2+胁迫的差异分析[J]. 生物技术通报, 2018, 34(8): 108-114. |
[6] | 蒋可人, 马峥, 郑航, 刘小军. 转录组与蛋白质组整合分析在生物学研究中的应用[J]. 生物技术通报, 2018, 34(12): 50-55. |
[7] | 钟姝霞,邓杰,卫春会,罗惠波,万世旅,黄治国. 不同窖龄窖泥微生物群落结构与理化指标的相关分析[J]. 生物技术通报, 2016, 32(7): 119-125. |
[8] | 牛俊奇, 黄静丽, 赵文慧, 杨丽涛, 李杨瑞. 甘蔗工艺成熟期SS和SPS酶活性与糖分积累的相关性研究[J]. 生物技术通报, 2015, 31(9): 105-110. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||