1 |
Filipič M. Mechanisms of cadmium induced genomic instability [J]. Mutat Res, 2012, 733(1/2): 69-77.
|
2 |
Wang HT, He L, Song J, et al. Cadmium-induced genomic instability in Arabidopsis: molecular toxicological biomarkers for early diagnosis of cadmium stress [J]. Chemosphere, 2016, 150: 258-265.
|
3 |
Cui WN, Wang HT, Song J, et al. Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips [J]. Ecotoxicol Environ Saf, 2017, 145: 569-574.
|
4 |
Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways [J]. J Cell Physiol, 2002, 191(1): 28-41.
|
5 |
Golubov A, Yao YL, Maheshwari P, et al. Microsatellite instability in Arabidopsis increases with plant development [J]. Plant Physiol, 2010, 154(3): 1415-1427.
|
6 |
Dzantiev L, Constantin N, Genschel J, et al. A defined human system that supports bidirectional mismatch-provoked excision [J]. Mol Cell, 2004, 15(1): 31-41.
|
7 |
Gomez RL, Galles C, Spampinato CP. High-level production of MSH2 from Arabidopsis thaliana: a DNA mismatch repair system key subunit [J]. Mol Biotechnol, 2011, 47(2): 120-129.
|
8 |
Culligan KM, Hays JB. Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA [J]. Plant Cell, 2000, 12(6): 991-1002.
|
9 |
Guo ML, Gao WX, Yu XJ, et al. Data mining of Arabidopsis thaliana salt-response proteins based on bioinformatics analysis [J]. Plant OMICS, 2012, 5(2): 75-78.
|
10 |
Chirinos-Arias MC, Spampinato CP. Role of the mismatch repair protein MSH7 in Arabidopsis adaptation to acute salt stress [J]. Plant Physiol Biochem, 2021, 169: 280-290.
|
11 |
孙晓霞, 宋有涛, 李照令, 等. Cu胁迫对拟南芥幼苗错配修复基因表达的影响 [J]. 生态学杂志, 2013, 32(8): 1973-1979.
|
|
Sun XX, Song YT, Li ZL, et al. Effects of copper stress on the expression of DNA mismatch repair genes in Arabidopsis thaliana plantlets [J]. Chin J Ecol, 2013, 32(8): 1973-1979.
|
12 |
张幸媛, 田宇豪, 秦玉芝, 等. miR169在植物生长发育与非生物胁迫响应中的作用 [J]. 植物遗传资源学报, 2021, 22(4): 900-909.
|
|
Zhang XY, Tian YH, Qin YZ, et al. The role of miR169 family members in the processes of growth, development and abiotic stress response in planta [J]. J Plant Genet Resour, 2021, 22(4): 900-909.
|
13 |
Orangi E, Motovali-Bashi M. Evaluation of miRNA-9 and miRNA-34a as potential biomarkers for diagnosis of breast cancer in Iranian women [J]. Gene, 2019, 687: 272-279.
|
14 |
Ye L, Jiang T, Shao HZ, et al. MiR-1290 is a biomarker in DNA-mismatch-repair-deficient colon cancer and promotes resistance to 5-fluorouracil by directly targeting hMSH2 [J]. Mol Ther Nucleic Acids, 2017, 7: 453-464.
|
15 |
Zhou ZS, Song JB, Yang ZM. Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium [J]. J Exp Bot, 2012, 63(12): 4597-4613.
|
16 |
Budak H, Kantar M, Bulut R, et al. Stress responsive miRNAs and isomiRs in cereals [J]. Plant Sci, 2015, 235: 1-13.
|
17 |
Ding YF, Zhu C. The role of microRNAs in copper and cadmium homeostasis [J]. Biochem Biophys Res Commun, 2009, 386(1): 6-10.
|
18 |
Ding YF, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa) [J]. J Exp Bot, 2011, 62(10): 3563-3573.
|
19 |
Qiu ZB, Hai BZ, Guo JL, et al. Characterization of wheat miRNAs and their target genes responsive to cadmium stress [J]. Plant Physiol Biochem, 2016, 101: 60-67.
|
20 |
成智博, 王鹤潼, 赵强, 等. 拟南芥miRNA172b-5p、miRNA172e-5p和miRNA472-3p靶向MSH6基因参与Cd应激响应 [J]. 生态学杂志, 2019, 38(12): 3738-3746.
|
|
Cheng ZB, Wang HT, Zhao Q, et al. MiRNA172b-5p, miRNA172e-5p and miRNA472-3p responded to Cd stress by targeting MSH6 gene in Arabidopsis thaliana [J]. Chin J Ecol, 2019, 38(12): 3738-3746.
|
21 |
Liu QK, Axtell MJ. Quantitating plant microRNA-mediated target repression using a dual-luciferase transient expression system [J]. Methods Mol Biol, 2015, 1284: 287-303.
|
22 |
谭小力, 诸葛锐军, 李冠英, 等. 农杆菌介导的油菜子叶瞬时表达 [J]. 生物学杂志, 2012, 29(6): 93-96.
|
|
Tan XL, Zhuge RJ, Li GY, et al. An agrobacterium-mediated transit transformation system in Brassica napus cotyledon [J]. J Microbiol, 2012, 29(6): 93-96.
|
23 |
宋玉芳, 许华夏, 任丽萍, 等. 重金属对西红柿种子发芽与根伸长的抑制效应 [J]. 中国环境科学, 2001, 21(5): 390-394.
|
|
Song YF, Xu HX, Ren LP, et al. Inhibition effect of heavy metals in soil on the inhibition of seed germination and root elongation of tomatoes [J]. China Environ Sci, 2001, 21(5): 390-394.
|
24 |
Chirinos-Arias MC, Spampinato CP. Growth and development of AtMSH7 mutants in Arabidopsis thaliana [J]. Plant Physiol Biochem, 2020, 146: 329-336.
|
25 |
Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology [J]. Annu Rev Biochem, 1996, 65: 101-133.
|
26 |
Umar A, Buermeyer AB, Simon JA, et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis [J]. Cell, 1996, 87(1): 65-73.
|
27 |
Wu S, Culligan K, Lamers M, et al. Dissimilar mispair-recognition spectra of Arabidopsis DNA-mismatch-repair proteins MSH2·MSH6 (MutSα) and MSH2·MSH7 (MutSγ) [J]. Nucleic Acids Res, 2003, 31(20): 6027-6034.
|
28 |
Sugawara N, Pâques F, Colaiácovo M, et al. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination [J]. Proc Natl Acad Sci USA, 1997, 94(17): 9214-9219.
|
29 |
Horwath M, Kramer W, Kunze R. Structure and expression of the Zea mays mutS-homologs Mus1 and Mus2 [J]. Theor Appl Genet, 2002, 105(2/3): 423-430.
|
30 |
Tam SM, Samipak S, Britt A, et al. Characterization and comparative sequence analysis of the DNA mismatch repair MSH2 and MSH7 genes from tomato [J]. Genetica, 2009, 137(3): 341-354.
|
31 |
Cao X, Wang HT, Zhuang DF, et al. Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots [J]. Chemosphere, 2018, 201: 586-594.
|
32 |
张柳伟. miR395调节油菜(Brassica napus)耐镉功能的研究 [D]. 南京: 南京农业大学, 2012.
|
|
Zhang LW. Study on the regulation of miR395 on cadmium tolerance of Brassica napus [D]. Nanjing: Nanjing Agricultural University, 2012.
|
33 |
肖莉, 刘春, 向世鹏, 等. microRNAs在植物响应金属毒性中的作用 [J]. 衡阳师范学院学报, 2013, 34(3): 113-117.
|
|
Xiao L, Liu C, Xiang SP, et al. The role of microRNAs in plant response to metal toxicity [J]. J Hengyang Norm Univ, 2013, 34(3): 113-117.
|