生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 119-126.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0772
• 研究报告 • 上一篇
陈慧婷(), 夏一楠(
), 颜伟, 张梦菲, 陈周梅, 侯丽霞(
), 刘新(
)
收稿日期:
2024-08-12
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
刘新,女,博士,教授,研究方向:植物抗逆生理与分子生物学;E-mail: liuxin6080@126.com作者简介:
陈慧婷,女,硕士研究生,研究方向:植物抗逆生理与分子生物学;E-mail: chuiting2000122@163.com基金资助:
CHEN Hui-ting(), XIA Yi-nan(
), YAN Wei, ZHANG Meng-fei, CHEN Zhou-mei, HOU Li-xia(
), LIU Xin(
)
Received:
2024-08-12
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 番茄在栽培过程中,常存在着色不均、色泽差等问题,导致番茄口感差、出售难,而绿原酸是植物界中广泛存在的一种酚酸类物质,探究其对设施番茄果实品质的影响,为提高果实品质及深入探究绿原酸作用机理提供基础。 方法 以设施番茄‘京彩8号’(Solanum lycopersicum. ‘Jingcai No 8’)为实验材料,对其进行外源绿原酸(chlorogenic acid, CGA)处理后,检测相关果实品质指标,并通过RT-qPCR对番茄中成熟相关基因进行表达量的分析。 结果 外施绿原酸提高了番茄红素含量和类胡萝卜素含量,降低了叶绿素含量,促进了番茄果实的着色;能够增加番茄果实的单果重,降低番茄果实的硬度;提高番茄果实的可溶性糖含量和糖酸比,及果实的可溶性固形物含量和维生素C含量,促进番茄果实的生长和成熟,提升了番茄果实的风味和营养物质含量。对成熟相关基因表达量检测的结果表明,外施绿原酸可以诱导番茄中成熟相关转录因子、乙烯合成酶基因高表达。 结论 推测外源绿原酸能通过调控乙烯合成通路促进番茄果实着色和成熟,提高其品质。
陈慧婷, 夏一楠, 颜伟, 张梦菲, 陈周梅, 侯丽霞, 刘新. 外源绿原酸处理对设施番茄果实品质的影响[J]. 生物技术通报, 2025, 41(2): 119-126.
CHEN Hui-ting, XIA Yi-nan, YAN Wei, ZHANG Meng-fei, CHEN Zhou-mei, HOU Li-xia, LIU Xin. Effect of Exogenous Chlorogenic Acid Treatment on Fruit Quality of Facility Tomato[J]. Biotechnology Bulletin, 2025, 41(2): 119-126.
引物名称 Primer | 引物序列 Primer’s sequences (5′-3′) |
---|---|
SlActin-F | TGGTCGGAATGGGACAGAAG |
SlActin-R | CTCAGTCAGGAGAACAGGGT |
SlNAC1-F | CGGTGGGAAAACCCAAAACC |
SlNAC1-R | GAGGCGGTACTCGTGCATAA |
SlNAC4-F | GGTGGGAAAACCCAAAACC |
SlNAC4-R | ACCTACTTTTTGGGTCCCGC |
SlFUL1-F | GGCACAGCAAAATCAGTGGG |
SlFUL1-R | GACGAAGCATCCATTGTGGC |
SlRIN-F | GGCATTGTGGTGAGCAAAGT |
SlRIN-R | GGTGCTGCATTTTCGGGTTG |
SlNOR-F | AACAACGAGGACGATGGACT |
SlNOR-R | GTTGTCGAAAGACGACCCCA |
SlACS2-F | AAAGCGCGATGAGGTTAGGT |
SlACS2-R | ACAAACTCGGAACCACCCTG |
SlACS4-F | CGACCCTTTCCACTTGGTGA |
SlACS4-R | CAGTAGCTCCACCAGCCATT |
SlACS1A-F | GCTGATCCTGGTGATGCCTT |
SlACS1A-R | TGTCACGGAGTGTGTCCTTG |
SlACO4-F | GCTGGTGGCATCATCCTTCT |
SlACO4-R | CTAGCTGATCGCCGAGGTTG |
表1 引物序列
Table 1 Primer sequences
引物名称 Primer | 引物序列 Primer’s sequences (5′-3′) |
---|---|
SlActin-F | TGGTCGGAATGGGACAGAAG |
SlActin-R | CTCAGTCAGGAGAACAGGGT |
SlNAC1-F | CGGTGGGAAAACCCAAAACC |
SlNAC1-R | GAGGCGGTACTCGTGCATAA |
SlNAC4-F | GGTGGGAAAACCCAAAACC |
SlNAC4-R | ACCTACTTTTTGGGTCCCGC |
SlFUL1-F | GGCACAGCAAAATCAGTGGG |
SlFUL1-R | GACGAAGCATCCATTGTGGC |
SlRIN-F | GGCATTGTGGTGAGCAAAGT |
SlRIN-R | GGTGCTGCATTTTCGGGTTG |
SlNOR-F | AACAACGAGGACGATGGACT |
SlNOR-R | GTTGTCGAAAGACGACCCCA |
SlACS2-F | AAAGCGCGATGAGGTTAGGT |
SlACS2-R | ACAAACTCGGAACCACCCTG |
SlACS4-F | CGACCCTTTCCACTTGGTGA |
SlACS4-R | CAGTAGCTCCACCAGCCATT |
SlACS1A-F | GCTGATCCTGGTGATGCCTT |
SlACS1A-R | TGTCACGGAGTGTGTCCTTG |
SlACO4-F | GCTGGTGGCATCATCCTTCT |
SlACO4-R | CTAGCTGATCGCCGAGGTTG |
图1 绿原酸处理后番茄果实的着色情况BT: Before treatment; AT: after treatment; Gr: green fruit stage; Ex: expansion stage;Br: break stage. The same below
Fig. 1 Coloration of tomato fruit after chlorogenic acid treatment
图2 外源绿原酸处理对番茄果实叶绿素(A)、类胡萝卜素(B)、番茄红素含量(C)的影响*P<0.05,**P<0.01,***P<0.001, the same below
Fig. 2 Effects of exogenous chlorogenic acid treatment on chlorophyll (A), carotenoid (B) and lycopene content (C) of tomato fruits
图3 外源绿原酸处理对番茄果实硬度(A)、单果重(B)和果形指数(C)的影响
Fig. 3 Effects of exogenous chlorogenic acid treatment on tomato fruit hardness (A), single fruit weight (B) and fruit shape index(C)
图4 外源绿原酸处理对番茄果实可溶性糖含量(A)、可滴定酸含量(B)、糖酸比(C)的影响
Fig. 4 Effects of exogenous chlorogenic acid treatment on soluble sugar content (A), titrable acid content (B) and sugar-acid ratio (C) of tomato fruit
图5 外源绿原酸处理对番茄果实可溶性固形物(A)、维生素C含量(B)的影响
Fig. 5 Effects of exogenous chlorogenic acid treatment on soluble solid (A) and vitamin C content (B) of tomato fruit
图6 外源绿原酸对番茄果实中成熟和乙烯合成相关基因相对表达量的影响A:番茄果实中成熟相关基因SlNAC1、SlNAC4、SlFUL1、SlRIN、SlNOR;B:番茄中乙烯合成相关基因SlACS2、SlACS4、SlACSIA、SlACO4
Fig. 6 Effects of exogenous chlorogenic acid treatment on the relative expressions of ripening and ethylene synthesis related genes in tomato fruitsA: Ripening gene SlNAC1, SlNAC4, SlFUL1, SlRIN and SlNOR in tomato fruit. B: Ethylene synthesis related genes SlACS2, SlACS4, SlACSIA, SlACO4 in tomato fruit
1 | 李文嘉, 徐彬, 邓文, 等. 绿原酸功能及应用研究进展 [J]. 河南农业, 2023(4): 57-58. |
Li WJ, Xu B, Deng W, et al. Research progress on the function and application of chlorogenic acid [J]. Agric Henan, 2023(4): 57-58. | |
2 | Xu ZJ, Wang JC, Ma YB, et al. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato [J]. The Plant Journal, 2023,115(1): 205-219. |
3 | 开凯. 绿原酸对猕猴桃和樱桃番茄采后病原菌抑制作用及机理研究 [D]. 合肥: 合肥工业大学, 2020. |
Kai K. Inhibitory effect and mechanism of chlorogenic acid on postharvest pathogens of kiwifruit and cherry tomato [D]. Hefei: Hefei University of Technology, 2020. | |
4 | Jiao WX, Li XX, Wang XM, et al. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway [J]. Food Chem, 2018, 260: 274-282. |
5 | 奚宇. 绿原酸对油桃和苹果果实采后成熟衰老的调控作用 [D]. 北京: 中国农业大学, 2017. |
Xi Y. Effect of chlorogenic acid on postharvest ripening and senescence of nectarine and apple fruits [D]. Beijing: China Agricultural University, 2017. | |
6 | 高铭忆, 颉建明, 张婧, 等. 1-MCP及乙烯利处理对番茄采后品质及生理变化的影响[J]. 甘肃农业大学学报, 2024, 59(6): 68-75+83. |
Gao MY, Jie JM, Zhang J, et al. Effects of 1-MCP and ethephon treatment on postharvest quality and physiological changes of tomato [J]. Journal of Gansu Agricultural University, 2024, 59(6): 68-75+83. | |
7 | 千春录, 罗迎秋, 张云, 等. 外源褪黑素对采后冷藏番茄硬度变化的影响及调控机制 [J]. 美食研究, 2023, 40(3): 92-98. |
Qian CL, Luo YQ, Zhang Y, et al. Effects of exogenous melatonin on firmness of postharvest tomato during cold storage and its regulatory mechanism [J]. J Res Diet Sci Cult, 2023, 40(3): 92-98. | |
8 | Zhu T, Tan WR, Deng XG, et al. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit [J]. Postharvest Biol Technol, 2015, 100: 196-204. |
9 | 刘艺涵, 谭蓉, 郭文忠, 等. 番茄果实次生代谢物对各生育期弱光处理敏感性分析 [J]. 农业工程学报, 2023, 39(19): 211-220. |
Liu YH, Tan R, Guo WZ, et al. Sensitivity analysis of secondary metabolites in tomato fruits to low light treatment at the different growth stages [J]. Trans Chin Soc Agric Eng, 2023, 39(19): 211-220. | |
10 | Zhang Y, Cheng WJ, Di HM, et al. Variation in nutritional components and antioxidant capacity of different cultivars and organs of Basella alba [J]. Plants (Basel), 2024, 13(6): 892. |
11 | Wang M, Li CY, Liu JQ, et al. Phenylalanine maintains the postharvest quality of 'Jinfeng' pear fruit by modulating the tricarboxylic acid cycle and chlorophyll catabolism [J]. Postharvest Biol Technol, 2023, 204: 112479. |
12 | 张连富, 丁霄霖. 番茄红素简便测定方法的建立 [J]. 食品与发酵工业, 2001, 27(3): 51-55. |
Zhang LF, Ding XL. Establishment of a new lycopene determination method [J]. Food Ferment Ind, 2001, 27(3): 51-55. | |
13 | Arya SP, Mahajan M, Jain P. Non-spectrophotometric methods for the determination of Vitamin C [J]. Anal Chim Acta, 2000, 417(1): 1-14. |
14 | Sun B, Tian YX, Jiang M, et al. Variation in the main health-promoting compounds and antioxidant activity of whole and individual edible parts of baby mustard (Brassica juncea var. gemmifera) [J]. RSC Adv, 2018, 8(59): 33845-33854. |
15 | 杨喜盟, 张彪, 李嘉立, 等. 采收期对‘烟富3号’苹果果实品质的影响 [J]. 中国果树, 2024(6): 26-32. |
Yang XM, Zhang B, Li JL, et al. Effect of picking date on fruit quality of 'Yanfu No. 3' apple [J]. China Fruits, 2024(6): 26-32. | |
16 | 李希东, 侯丽霞, 刘新, 等. H2O2与葡萄VvIPK2基因表达及其低温胁迫响应的关系 [J]. 园艺学报, 2011, 38(6): 1052-1062. |
Li XD, Hou LX, Liu X, et al. Involvement of H2O2 in regulating the expression of VvIPK2 in response to low temperature stress in leaves of Vitis [J]. Acta Hortic Sin, 2011, 38(6): 1052-1062. | |
17 | Nguyen V, Taine EG, Meng DH, et al. Chlorogenic acid: a systematic review on the biological functions, mechanistic actions, and therapeutic potentials [J]. Nutrients, 2024, 16(7): 924. |
18 | 陈治民, 李翠, 韦继天, 等. 绿原酸生物合成调控及其应用研究进展 [J]. 生物技术通报, 2024, 40(1): 57-71. |
Chen ZM, Li C, Wei JT, et al. Research progress in the regulation of chlorogenic acid biosynthesis and its application [J]. Biotechnol Bull, 2024, 40(1): 57-71. | |
19 | 宿子文, 蔡志翔, 孙朦, 等. 植物中绿原酸生物合成研究进展[J]. 江苏农业学报, 2023, 39(6): 1414-1426. |
Su ZW, Cai ZX, Sun M, et al. Research progress on biosynthesis of chlorogenic acid in plants [J]. Jiangsu J Agric Sci, 2023, 39(6): 1414-1426. | |
20 | 邵秀红, 张海霞, 马柱文, 等. 茄科作物绿原酸的生物合成及调控机制研究进展 [J]. 广东农业科学, 2023, 50(7): 102-114. |
Shao XH, Zhang HX, Ma ZW, et al. Research progress on biosynthesis and regulatory mechanisms of chlorogenic acid in Solanaceae crops [J]. Guangdong Agric Sci, 2023, 50(7): 102-114. | |
21 | Lallemand LA, Zubieta C, Lee SG, et al. A structural basis for the biosynthesis of the major chlorogenic acids found in coffee[J]. Plant Physiol, 2012, 160(1): 249-260. |
22 | Alcázar Magaña A, Kamimura N, Soumyanath A, et al. Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity [J]. Plant J, 2021, 107(5): 1299-1319. |
23 | 周伟权. 杏果实类胡萝卜素代谢及积累机理研究 [D]. 乌鲁木齐: 新疆农业大学, 2021. |
Zhou WQ. Study on carotenoid metabolism and accumulation mechanism in apricot fruit [D]. Urumqi: Xinjiang Agricultural University, 2021. | |
24 | 贾朝爽, 王志华, 王文辉. 不同货架温度结合1-MCP处理对华红、华月苹果质地性状的影响 [J]. 华北农学报, 2022, 37(4): 128-140. |
Jia ZS, Wang ZH, Wang WH. Effects of different shelf temperature combined with 1-MCP treatment on texture traits of Huahong and Huayue apples [J]. Acta Agric Boreali Sin, 2022, 37(4): 128-140. | |
25 | Li X, Tieman D, Liu ZM, et al. Identification of a lipase gene with a role in tomato fruit short-chain fatty acid-derived flavor volatiles by genome-wide association [J]. Plant J, 2020, 104(3): 631-644. |
26 | 岳冬. 番茄果实主要风味特征成分测定及品质形成机理研究 [D]. 南京: 南京农业大学, 2015. |
Yue D. Determination of main flavor components of tomato fruit and study on quality formation mechanism [D]. Nanjing: Nanjing Agricultural University, 2015. | |
27 | 张旭伟, 徐明磊, 李红艳, 等. 番茄果实可溶性固形物的作用及研究概况 [J]. 科技资讯, 2011, 9(15): 160-161. |
Zhang XW, Xu ML, Li HY, et al. Function and research survey of soluble solids in tomato fruit [J]. Sci Technol Inf, 2011, 9(15): 160-161. | |
28 | 郭西智, 陈锦永, 顾红, 等. 乙烯利在果蔬生产中的安全应用 [J]. 湖北农业科学, 2018, 57(8): 5-8. |
Guo XZ, Chen JY, Gu H, et al. The secure application of ethephon on fruits and vegetables production [J]. Hubei Agric Sci, 2018, 57(8): 5-8. | |
29 | Jia HM, Xu YP, Deng YW, et al. Key transcription factors regulate fruit ripening and metabolite accumulation in tomato [J]. Plant Physiol, 2024, 195(3): 2256-2273. |
30 | 康靖. 转录因子介导乙烯调控番茄果实成熟的研究进展 [J]. 安徽农业科学, 2021, 49(16): 16-18. |
Kang J. Research progress on transcription factor-mediated ethylene regulation of tomato fruit ripening [J]. J Anhui Agric Sci, 2021, 49(16): 16-18. | |
31 | Liu GS, Huang H, Grierson D, et al. NAC transcription factor SlNOR-like1 plays a dual regulatory role in tomato fruit cuticle formation [J]. J Exp Bot, 2024, 75(7): 1903-1918. |
32 | Ma NN, Feng HL, Meng X, et al. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening [J]. BMC Plant Biol, 2014, 14: 351. |
33 | Zhu MK, Chen GP, Zhou S, et al. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation [J]. Plant Cell Physiol, 2014, 55(1): 119-135. |
34 | Martel C, Vrebalov J, Tafelmeyer P, et al. The tomato mads-box transcription factor ripening inhibitor interacts with promoters involved in numerous ripening processes in a colorless nonripening-dependent manner[J]. Plant Physiol, 2011, 157(3): 1568-1579. |
35 | Li L, Zhu BZ, Yang PY, et al. The regulation mode of RIN transcription factor involved in ethylene biosynthesis in tomato fruit [J]. J Sci Food Agric, 2011, 91(10): 1822-1828. |
36 | Bemer M, Karlova R, Ballester AR, et al. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening [J]. Plant Cell, 2012, 24(11): 4437-4451. |
37 | Gao Y, Fan ZQ, Zhang Q, et al. A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening [J]. Plant J, 2021, 108(5): 1317-1331. |
[1] | 陈强, 黄馨慧, 张峥, 张冲, 柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响[J]. 生物技术通报, 2024, 40(4): 139-147. |
[2] | 陈治民, 李翠, 韦继天, 李昕然, 刘峄, 郭强. 绿原酸生物合成调控及其应用研究进展[J]. 生物技术通报, 2024, 40(1): 57-71. |
[3] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[4] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[5] | 张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276. |
[6] | 王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152. |
[7] | 王琪媛, 王甲辰, 叶磊, 姜帆. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报, 2021, 37(2): 174-186. |
[8] | 高超, 郝孔利, 赵宇婷, 毛樱翔, 池明眼, 张杰. 一株能够降解聚乙烯的霍氏肠杆菌的鉴定及分析[J]. 生物技术通报, 2020, 36(10): 99-104. |
[9] | 刘亚兰, 段梦洁, 林晓珊, 张毅. 聚乙烯醇降解细菌筛选及其降解特性[J]. 生物技术通报, 2019, 35(6): 91-98. |
[10] | 刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展[J]. 生物技术通报, 2019, 35(3): 171-182. |
[11] | 王竹承, 刘辉, 李荣华, 陈新, 李欣, 路致远. 外源硫与乙烯缓解马齿苋镉胁迫的生理机制研究[J]. 生物技术通报, 2019, 35(10): 71-79. |
[12] | 窦悦, 刘美彤, 卢安娜, 吴佳洁, 王群青, 胥倩. 中介体亚基MED25调控植物激素信号转导的研究进展[J]. 生物技术通报, 2018, 34(7): 40-47. |
[13] | 李天真, 周威, 殷华, 张同存, 刘涛. 苦碟子中对香豆酰转移酶基因克隆分析与功能验证[J]. 生物技术通报, 2018, 34(11): 120-126. |
[14] | 欧阳婧,孙园园,唐泽民,唐政山,李放军,杨寅柯. 慢病毒介导沉默PD-L1基因在乳腺癌细胞中的表达[J]. 生物技术通报, 2017, 33(9): 259-266. |
[15] | 李三和, 闸雯俊, 陈志军, 周雷, 刘凯, 游艾青,. 水稻Bph14基因生理功能初探[J]. 生物技术通报, 2017, 33(12): 93-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||