生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 127-138.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0799
• 研究报告 • 上一篇
马天意(), 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳(
)
收稿日期:
2024-08-21
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
彭疑芳,女,硕士,讲师,研究方向 :植物逆境分子生物学;E-mail: 02951@qqhru.edu.cn作者简介:
马天意,男,博士,副教授,研究方向 :植物逆境分子生物学;E-mail: tyma@qqhru.edu.cn
基金资助:
MA Tian-yi(), XU Jia-jia, LU Wen-jing, WU Yan, SHA Wei, ZHANG Mei-juan, PENG Yi-fang(
)
Received:
2024-08-21
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 对不同盐碱胁迫处理下耐盐碱性不同的大白菜(Brassica rapa ssp. pekinensis)品种中BrcGASA3的表达响应模式进行分析,对耐盐碱性相对较强的‘金小童’品种大白菜中BrcGASA3进行克隆,并在模式植物拟南芥(Arabidopsis thaliana)中进行遗传转化以鉴定BrcGASA3的盐碱胁迫响应特性。 方法 利用实时荧光定量PCR对盐碱耐性不同的大白菜品种在不同浓度NaCl和Na2CO3处理过程中BrcGASA3的表达模式进行检测;对‘金小童’品种大白菜中BrcGASA3的编码序列进行克隆;构建BrcGASA3过表达转基因拟南芥并进行盐碱胁迫处理,观察植株表型并进行生理生化指标测定及分析。 结果 在NaCl处理中,较低浓度处理时耐盐性较高的大白菜中BrcGASA3表达量较高,较高浓度处理时耐盐性较低的大白菜中BrcGASA3表达量较高;在Na2CO3处理中,低浓度处理下两种大白菜中BrcGASA3表达量差异相对较小,高浓度处理下耐盐性较高的大白菜中BrcGASA3表达量显著高于耐盐性较低的大白菜;成功克隆获得‘金小童’大白菜中BrcGASA3的编码序列并构建了多个BrcGASA3过表达转基因拟南芥纯合体株系,发现在NaCl和Na2CO3处理下BrcGASA3过表达转基因拟南芥显示出低于野生型拟南芥的胁迫耐性;测定出在不同浓度NaCl和Na2CO3处理下BrcGASA3过表达转基因拟南芥和野生型拟南芥的渗透调节物质的含量、丙二醛含量、叶绿素含量等生理生化指标,初步阐释了过表达BrcGASA3降低拟南芥植株盐碱胁迫耐性的生理响应情况。 结论 在抗盐碱性不同的大白菜品种中BrcGASA3在不同程度盐碱胁迫处理下的表达响应方式不同,BrcGASA3在拟南芥中过表达降低了植株在盐碱胁迫处理下的生长能力。
马天意, 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳. ‘金小童’大白菜BrcGASA3基因在盐碱胁迫下的表达分析及抗性鉴定[J]. 生物技术通报, 2025, 41(2): 127-138.
MA Tian-yi, XU Jia-jia, LU Wen-jing, WU Yan, SHA Wei, ZHANG Mei-juan, PENG Yi-fang. Expression Analysis and Resistance Identification of BrcGASA3 in Chinese Cabbage ‘Jinxiaotong’ Cultivar under Saline-alkali Stress[J]. Biotechnology Bulletin, 2025, 41(2): 127-138.
引物名称 Primer name | 序列Sequence (5′-3′) | 用途Application |
---|---|---|
qPCR-BrcGASA3-F | AACCACATCCACCACAGTCC | qPCR |
qPCR-BrcGASA3-R | GTCTTCCAGTTGTTGTAGCAAGG | qPCR |
qPCR-BrcActin-F | AGCGTGGCAACCTGGGATG | qPCR |
qPCR-BrcActin-R | TGATGAACAAGAAAGTAGGCATAGCG | qPCR |
BrcGASA3-F | ATGCACCCAATACACCTGGAG | 克隆载体构建Cloning vector construction |
BrcGASA3-R | TCAAGGGCATTTAGGTCCACC | 克隆载体构建Cloning vector construction |
IN-BrcGASA3-F | ATGCCCGTCGACCCCATCGACCCAATACAC | 表达载体构建Expression vector construction |
IN-BrcGASA3-R | GGATCCGGTACCCCCTCAAGGGCATTTAGG | 表达载体构建Expression vector construction |
AtActin1-F | CGCTTAACCCGAAAGCTAAC | qPCR |
AtActin1-R | TACGCCCACTAGCGTAAAGA | qPCR |
表1 本研究所用的引物
Table 1 Primers used in this study
引物名称 Primer name | 序列Sequence (5′-3′) | 用途Application |
---|---|---|
qPCR-BrcGASA3-F | AACCACATCCACCACAGTCC | qPCR |
qPCR-BrcGASA3-R | GTCTTCCAGTTGTTGTAGCAAGG | qPCR |
qPCR-BrcActin-F | AGCGTGGCAACCTGGGATG | qPCR |
qPCR-BrcActin-R | TGATGAACAAGAAAGTAGGCATAGCG | qPCR |
BrcGASA3-F | ATGCACCCAATACACCTGGAG | 克隆载体构建Cloning vector construction |
BrcGASA3-R | TCAAGGGCATTTAGGTCCACC | 克隆载体构建Cloning vector construction |
IN-BrcGASA3-F | ATGCCCGTCGACCCCATCGACCCAATACAC | 表达载体构建Expression vector construction |
IN-BrcGASA3-R | GGATCCGGTACCCCCTCAAGGGCATTTAGG | 表达载体构建Expression vector construction |
AtActin1-F | CGCTTAACCCGAAAGCTAAC | qPCR |
AtActin1-R | TACGCCCACTAGCGTAAAGA | qPCR |
图1 不同浓度NaCl和Na2CO3处理下大白菜BrcGASA3的表达量分析JT:‘金小童’品种大白菜;RC:‘日本春秋’品种大白菜;误差线表示标准偏差,误差线上不同字母表示差异显著(P<0.05),下同
Fig. 1 Expression analysis of BrcGASA3 in Chinese cabbage treated with different concertation of NaCl and Na2CO3JT: Chinese cabbage cultivar 'Jinxiaotong'; RC: Chinese cabbage cultivar 'Ribenchunqiu'. The error bars indicate the standard deviation, and the different letters on the error bars indicate significance (P<0.05), the same below
图2 BrcGASA3编码序列的PCR扩增结果和重组表达载体质粒的验证A:BrcGASA3编码序列的PCR扩增结果(M:DL 2000 DNA marker;-:水对照;1:BrcGASA3编码序列);B:BrcGASA3重组表达载体质粒验证(M:DL 2000 DNA marker;-:水对照;+:克隆载体阳性对照;2:BrcGASA3大肠杆菌菌液)
Fig. 2 PCR amplification results of BrcGASA3 coding sequence and validation of recombinant expression vector plasmidA: PCR amplification results of the coding sequence of BrcGASA3 (M: DL 2000 DNA marker; -: water control; 1: BrcGASA3 coding sequence). B: Verification of BrcGASA3 recombinant expression vector plasmid (M: DL 2000 DNA marker; -: water control; +: cloning vector positive control; 2: BrcGASA3 E. coli suspension)
图3 BrcGASA3过表达转基因拟南芥的筛选及鉴定A:BrcGASA3过表达转基因拟南芥T1代植株的筛选;B:BrcGASA3过表达转基因拟南芥T2代植株的相对表达量检测
Fig. 3 Screening and characterization of BrcGASA3 overexpressed transgenic Arabidopsis thalianaA: Screening of T1 generation plants of transgenic Arabidopsis thaliana overexpressing BrcGASA3. B: Detection of relative expression of transgenic A. thaliana T2 plants overexpressing BrcGASA3
图4 T3代BrcGASA3过表达转基因拟南芥幼苗在不同浓度NaCl和Na2CO3处理中的表型CK:NaCl和Na2CO3浓度为0;OE1:brcgasa3-oe1;OE3:brcgasa3-oe3;OE31:brcgasa3-oe31
Fig. 4 Phenotypes of T3 generation BrcGASA3 overexpressed transgenic A. thaliana seedlings under different concentration of NaCl and Na2CO3 treatmentsCK: NaCl and Na2CO3 concentrations is 0; OE1: brcgasa3-oe1; OE3: brcgasa3-oe3; OE31: brcgasa3-oe31
图5 不同浓度NaCl和Na2CO3处理下Col-0和BrcGASA3过表达转基因拟南芥根长
Fig. 5 Root lengths of Col-0and BrcGASA3 overexpressed transgenic A. thaliana under NaCl and Na2CO3 treatments of different concentration
图6 不同浓度NaCl处理下Col-0和BrcGASA3过表达转基因拟南芥植株幼苗相关指标的变化
Fig. 6 Changes of related indexes in seedlings ofCol-0and BrcGASA3 overexpressed transgenic A. thaliana under NaCl treatments of different concentration
图7 不同浓度Na2CO3处理下Col-0和BrcGASA3过表达转基因拟南芥植株幼苗相关指标的变化
Fig. 7 Changes of related indexes in seedlings of Col-0 and BrcGASA3 overexpression transgenic A. thaliana under Na2CO3 treatments of different concentration
1 | 沙伟, 吴艳, 张梅娟, 等. 大白菜受环境胁迫影响的研究进展 [J]. 分子植物育种, 2021, 19(6): 2037-2040. |
Sha W, Wu Y, Zhang MJ, et al. Research progress of Chinese cabbage affected by environmental stresses [J]. Mol Plant Breed, 2021, 19(6): 2037-2040. | |
2 | 胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述 [J]. 陕西农业科学, 2015, 61(2): 67-71. |
Hu Y, Han JC, Zhang Y. Summary of research on improvement technology of saline-alkali land [J]. Shaanxi J Agric Sci, 2015, 61(2): 67-71. | |
3 | 章阳阳. 我国沿海滩涂地带盐碱地治理开发业务的商业模式初探 [D]. 南京: 东南大学, 2017. |
Zhang YY. A preliminary study on the business model of saline-alkali land management and development in coastal beach areas of China [D]. Nanjing: Southeast University, 2017. | |
4 | Jin XQ, Liu T, Xu JJ, et al. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis [J]. BMC Plant Biol, 2019, 19(1): 48. |
5 | 张淑江, 李菲, 章时蕃, 等. “十一五” 我国大白菜遗传育种研究进展 [J]. 中国蔬菜, 2011(6): 1-8. |
Zhang SJ, Li F, Zhang SF, et al. Research progress on Chinese cabbage genetics and breeding during ‘the Eleventh Five-Year Plan’ of China [J]. China Veg, 2011(6): 1-8. | |
6 | 钱双杰, 吴刘清, 邓雨琦, 等. 赤霉素关键蛋白DELLA对植物雄蕊发育研究进展 [J]. 上海师范大学学报: 自然科学版, 2023, 52(6): 736-742. |
Qian SJ, Wu LQ, Deng YQ, et al. Research progress on the development of plant stamens by gibberellin key protein DELLA [J]. J Shanghai Norm Univ Nat Sci, 2023, 52(6): 736-742. | |
7 | Sun BX, Zhao XL, Gao JH, et al. Genome-wide identification and expression analysis of the GASA gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. BMC Genomics, 2023, 24(1): 668. |
8 | Shi L, Gast RT, Gopalraj M, et al. Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato [J]. Plant J, 1992, 2(2): 153-159. |
9 | Ahmad B, Yao J, Zhang SL, et al. Genome-wide characterization and expression profiling of GASA genes during different stages of seed development in grapevine (Vitis vinifera L.) predict their involvement in seed development [J]. Int J Mol Sci, 2020, 21(3): 1088. |
10 | 张盛春, 王小菁. 拟南芥DELLA下游的GASA基因表达研究 [J]. 科学通报, 2008, 53(22): 2760-2767. |
Zhang SC, Wang XJ. Study on expression of GASA gene downstream of DELLA in Arabidopsis thaliana [J]. Chin Sci Bull, 2008, 53(22): 2760-2767. | |
11 | Ko CB, Woo YM, Lee DJ, et al. Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene [J]. Plant Physiol Biochem, 2007, 45(9): 722-728. |
12 | Porto WF, Franco OL. Theoretical structural insights into the snakin/GASA family [J]. Peptides, 2013, 44: 163-167. |
13 | Sun SL, Wang HX, Yu HM, et al. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation [J]. J Exp Bot, 2013, 64(6): 1637-1647. |
14 | Alonso-Ramírez A, Rodríguez D, Reyes D, et al. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds [J]. Plant Physiol, 2009, 150(3): 1335-1344. |
15 | Lee SC, Han SK, Kim SR. Salt- and ABA-inducible OsGASR1 is involved in salt tolerance [J]. J Plant Biol, 2015, 58(2): 96-101. |
16 | 冯冠楠, 安聪, 丁鋆嘉, 等. 狗尾草GASA基因家族鉴定及其在不同逆境下表达模式分析 [J]. 草地学报, 2022, 30(6): 1379-1387. |
Feng GN, An C, Ding YJ, et al. Characterization and analysis of GASA gene family and response to abiotic stress in Setaria viridis [J]. Acta Agrestia Sin, 2022, 30(6): 1379-1387. | |
17 | 吴艳. 盐碱胁迫下不同品种白菜的生理生化与转录组学分析 [D]. 齐齐哈尔: 齐齐哈尔大学, 2021. |
Wu Y. Physiological, biochemical and transcriptional analysis of different cultivars of Chinese cabbage under saline and alkali stress [D] . Qiqihar: Qiqihar University, 2021. | |
18 | Zang YX, Zheng WW, He Y, et al. Global analysis of transcriptional response of Chinese cabbage to methyl jasmonate reveals JA signaling on enhancement of secondary metabolism pathways [J]. Sci Hortic, 2015, 189: 159-167. |
19 | 马静, 曲春浦, 许志茹, 等. 西伯利亚蓼铜伴侣蛋白与铜锌超氧化物歧化酶基因共转化烟草的耐盐性分析 [J]. 植物研究, 2015, 35(2): 208-217. |
Ma J, Qu CP, Xu ZR, et al. Salt tolerance of transgenic tobacco containing PsATX and PsSOD genes of Polygonum sibiricum Laxm [J]. Bull Bot Res, 2015, 35(2): 208-217. | |
20 | 信雨萌, 沙伟, 张梅娟, 等. 砂藓抗旱相关转录因子基因RcbZIP1的克隆与表达分析 [J]. 基因组学与应用生物学, 2018, 37(7): 2949-2957. |
Xin YM, Sha W, Zhang MJ, et al. Cloning and expression analysis of drought-resistant related transcription factor gene RcbZIP1 from Racomitrium canescens [J]. Genom Appl Biol, 2018, 37(7): 2949-2957. | |
21 | 代军. 大肠杆菌感受态细胞制备及转化条件优化 [J]. 江苏农业科学, 2015, 43(4): 53-54. |
Dai J. Preparation of competent cells of Escherichia coli and optimization of transformation conditions [J]. Jiangsu Agric Sci, 2015, 43(4): 53-54. | |
22 | 马天意, 张时通, 朱巍巍, 等. 砂藓RcPLD基因的抗旱功能分析 [J]. 西北植物学报, 2021, 41(7): 1091-1100. |
Ma TY, Zhang ST, Zhu WW, et al. Analysis of drought-resistance function of RcPLD gene from Racomitrium canescens [J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(7): 1091-1100. | |
23 | 苍晶, 赵会杰. 植物生理学实验教程 [M]. 北京: 高等教育出版社, 2013. |
Cang J, Zhao HJ. Experimental course of plant physiology [M]. Beijing: Higher Education Press, 2013. | |
24 | 翟允汝. 荷花关键转录因子NAC35响应盐碱胁迫的调控功能研究 [D]. 郑州: 河南农业大学, 2023. |
Zhai YR. Study on the regulatory function of lotus key transcription factor NAC35 in response to saline-alkali stress [D]. Zhengzhou: Henan Agricultural University, 2023. | |
25 | 王继伟, 赵成章, 赵连春, 等. 内陆盐沼芦苇根系形态及生物量分配对土壤盐分因子的响应 [J]. 生态学报, 2018, 38(13): 4843-4851. |
Wang JW, Zhao CZ, Zhao LC, et al. Response of root morphology and biomass of Phragmites australis to soil salinity in inland salt marsh [J]. Acta Ecol Sin, 2018, 38(13): 4843-4851. | |
26 | Xie ZX, Duan LS, Tian XL, et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity [J]. J Plant Physiol, 2008, 165(4): 375-384. |
27 | 王爱国, 邵从本, 罗广华. 丙二醛作为植物脂质过氧化指标的探讨 [J]. 植物生理学通讯, 1986, 22(2): 55-57. |
Wang AG, Shao CB, Luo GH. Inquiry into malondialdehyde as index of peroxidation of plant lipids [J]. Plant Physiol Commun, 1986, 22(2): 55-57. | |
28 | 韩多红, 张勇, 晋玲. 碱性盐及混合盐碱胁迫对蒙古黄芪种子萌发和幼苗生理特性的影响 [J]. 中草药, 2013, 44(12): 1661-1666. |
Han DH, Zhang Y, Jin L. Effect of basic salt and mixed salt-alkali stress tolerance on seed germination and seedling physiological characteristics of Astraglus membranaceus var. mongholicus [J]. Chin Tradit Herb Drugs, 2013, 44(12): 1661-1666. | |
29 | Guo HY, Zhang CR, Wang YM, et al. Expression profiles of genes regulated by BplMYB46 in Betula platyphylla [J]. J For Res, 2019, 30(6): 2267-2276. |
30 | 邹丽娜, 周志宇, 颜淑云, 等. 盐分胁迫对紫穗槐幼苗生理生化特性的影响 [J]. 草业学报, 2011, 20(3): 84-90. |
Zou LN, Zhou ZY, Yan SY, et al. Effect of salt stress on physiological and biochemical characteristics of Amorpha fruticosa seedlings [J]. Acta Prataculturae Sin, 2011, 20(3): 84-90. | |
31 | 赵明德, 李惠梅, 马静, 等. 碱胁迫对燕麦幼苗生理指标的响应 [J]. 西南大学学报: 自然科学版, 2021, 43(10): 58-65. |
Zhao MD, Li HM, Ma J, et al. Response of alkali stress to physiological indexes of oat seedlings [J]. J Southwest Univ Nat Sci Ed, 2021, 43(10): 58-65. | |
32 | Ye J, Wang SW, Deng XP, et al. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage [J]. Acta Physiol Plant, 2016, 38(2): 48. |
33 | Siddique A, Kandpal G, Kumar P. Proline accumulation and its defensive role under diverse stress condition in plants: an overview [J]. J Pure Appl Microbiol, 2018, 12(3): 1655-1659. |
34 | 张小艾, 李名扬, 汪志辉, 等. 重金属及盐碱对二月兰幼苗生长和生理生化的影响 [J]. 草业学报, 2013, 22(2): 187-194. |
Zhang XA, Li MY, Wang ZH, et al. Effects of heavy metals and saline-alkali on seedlings growth, physiological-biochemical of Oryehophragmus violaeeus [J]. Acta Prataculturae Sin, 2013, 22(2): 187-194. | |
35 | Agastian P, Kingsley SJ, Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes [J]. Photosynthetica, 2000, 38(2): 287-290. |
36 | 张永超, 梁国玲, 秦燕, 等. 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应 [J]. 草业学报, 2022, 31(1): 229-237. |
Zhang YC, Liang GL, Qin Y, et al. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus [J]. Acta Prataculturae Sin, 2022, 31(1): 229-237. | |
37 | Heidari M, Jamshidi P. Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet [J]. Agric Sci China, 2011, 10(2): 228-237. |
38 | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65(5): 1229-1240. |
39 | 周建, 杨立峰, 张琳, 等. 碱胁迫对合欢种子萌发及幼苗生理指标的影响 [J]. 浙江大学学报: 农业与生命科学版, 2008, 34(4): 401-408. |
Zhou J, Yang LF, Zhang L, et al. Effect of alkaline stress on seed germination and seedling physiological indices of Albizzia julibrissin Durazz [J]. J Zhejiang Univ Agric Life Sci, 2008, 34(4): 401-408. |
[1] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[2] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[3] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[4] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[5] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[6] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[7] | 周冉, 王兴平, 李彦霞, 罗仍卓么. 金黄色葡萄球菌型乳房炎奶牛乳腺组织的lncRNA差异表达分析[J]. 生物技术通报, 2024, 40(8): 320-328. |
[8] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
[9] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[10] | 杨巍, 赵丽芬, 唐兵, 周麟笔, 杨娟, 莫传园, 张宝会, 李飞, 阮松林, 邓英. 芥菜SRO基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 129-141. |
[11] | 李亦君, 杨小贝, 夏琳, 罗朝鹏, 徐馨, 杨军, 宁黔冀, 武明珠. 烟草NtPRR37基因克隆及功能分析[J]. 生物技术通报, 2024, 40(8): 221-231. |
[12] | 张明亚, 庞胜群, 刘玉东, 苏永峰, 牛博文, 韩琼琼. 番茄FAD基因家族的鉴定与表达分析[J]. 生物技术通报, 2024, 40(7): 150-162. |
[13] | 臧文蕊, 马明, 砗根, 哈斯阿古拉. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. |
[14] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
[15] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
阅读次数 | ||||||
全文 25
|
|
|||||
摘要 |
|
|||||