生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 121-133.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0372

• 未来食品工程专题 • 上一篇    

以果葡糖浆为底物高效合成肌醇细胞工厂的构建

杨熠辰1(), 朱宏宇2, 苏小运2, 王苑2, 罗会颖2, 田健2, 姚斌1,2, 黄火清2(), 张杰2()   

  1. 1.西北农林科技大学动物科技学院,杨凌 712100
    2.中国农业科学院北京畜牧兽医研究所畜禽营养与饲养全国重点实验室,北京 100193
  • 收稿日期:2025-04-09 出版日期:2025-11-26 发布日期:2025-12-09
  • 通讯作者: 黄火清,男,博士,研究员,研究方向 :微生物与酶工程;E-mail: huanghuoqing@caas.cn
    张杰,男,博士,研究员,研究方向 :微生物代谢工程;E-mail: zhangjie09@caas.cn
  • 作者简介:杨熠辰,男,硕士研究生,研究方向 :微生物代谢工程;E-mail: xms02yyc@163.com
  • 基金资助:
    国家重点研发计划(2023YFD1300704);国家肉鸡产业技术体系(CARS-41);农业科技创新工程(CAAS-ZDRW202304)

Construction of an Efficient Microbial Cell Factory for Inositol Production from Glucose-fructose Syrup

YANG Yi-chen1(), ZHU Hong-yu2, SU Xiao-yun2, WANG Yuan2, LUO Hui-ying2, TIAN Jian2, YAO Bin1,2, HUANG Huo-qing2(), ZHANG Jie2()   

  1. 1.College of Animal Science and Technology, Northwest A&F University, Yangling 712100
    2.State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2025-04-09 Published:2025-11-26 Online:2025-12-09

摘要:

目的 改造大肠杆菌的果糖与葡萄糖共代谢系统,建立肌醇合成代谢通路,构建以果葡糖浆为原料高产肌醇的大肠杆菌工程菌株。 方法 以大肠杆菌BW25113为出发菌株,首先通过阻断糖酵解途径和磷酸戊糖途径的关键节点,提高肌醇合成前体6-磷酸葡萄糖的供给,并通过过表达酿酒酵母来源的肌醇-3-磷酸合酶基因(Scips)和大肠杆菌来源的肌醇单磷酸酶基因(imp)引入肌醇合成模块;其次通过基因组整合过表达酿酒酵母来源的景天庚酮糖-1,7-二磷酸酶基因(Scshb17)及果糖转运系统相关基因,构建果糖-葡萄糖共利用体系;最终通过敲除底盘菌株烯醇化酶基因eno,构建肌醇合成模块与eno协同表达载体,实现无抗生素条件下肌醇合成基因的高效稳定表达。 结果 以F42型果葡糖浆为底物进行无抗生素发酵时,最优工程菌JY18的肌醇产量达到40.53 g/L,葡萄糖转化率为0.92 g/g,生产强度为0.64 g/(L·h)。 结论 建立的果糖-葡萄糖共利用系统及肌醇合成模块-eno协同表达系统有效提升了工程菌株的碳源适应性与生产稳定性,为以果葡糖浆为原料的生物炼制平台的建立提供了创新技术方案和理论支撑。

关键词: 果葡糖浆, 肌醇, 大肠杆菌, 细胞工厂, 代谢工程

Abstract:

Objective The objective of this study is to construct an engineered Escherichia coli strain for efficientinositol production from glucose-fructose syrup by engineering fructose and glucose co-metabolism system in E. coli and establishing an inositol biosynthetic pathway. Method Using E. coli BW25113 as the starting strain, the supply of inositol precursor glucose-6-phosphate was first enhanced by blocking key nodes in the glycolysis and pentose phosphate pathway. An inositol biosynthesis module was introduced through overexpression of the Saccharomyces cerevisiae-derived inositol-3-phosphate synthase gene (Scips) and the E. coli-derived inositol monophosphatase gene (imp). Subsequently, a fructose-glucose co-utilization system was constructed by genomically integrating the S. cerevisiae-derived sedoheptulose-1,7-bisphosphatase gene (Scshb17) and the genes related to fructose transport system. Finally, efficient and stable expressions of inositol synthesis genes without antibiotics were achieved through deletion of enolase gene (eno) in the chassis strain and construction of a co-expression vector containing the inositol synthesis module and eno gene. Result When F42 glucose-fructose syrup was used as substrate for antibiotic-free fermentation, the optimized engineered strain JY18 achieved an inositol titer of 40.53 g/L, a glucose conversion rate of 0.92 g/g, and a productivity of 0.64 g/(L·h). Conclusion The developed fructose-glucose co-utilization system and the inositol synthesis module-eno coordinated expression system effectively improves the carbon source adaptability and production stability of the engineered strain, which provides innovative technical strategies and theoretical foundation for establishing a biorefinery platform using glucose-fructose syrup as feedstock.

Key words: glucose-fructose syrup, inositol, Escherichia coli, cell factory, metabolic engineering