生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 81-94.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0011
张美玉1,2(), 赵玉斌3, 王灵云3, 宋元达1,2, 赵新河1,2(), 任晓洁1,2()
收稿日期:
2024-01-04
出版日期:
2024-06-26
发布日期:
2024-05-15
通讯作者:
任晓洁,女,博士,副教授,研究方向:微生物代谢工程;E-mail: renxiaojie@sdut.edu.cn;作者简介:
张美玉,女,硕士研究生,研究方向:微生物代谢工程;E-mail: zmeiyu1118@163.com
基金资助:
ZHANG Mei-yu1,2(), ZHAO Yu-bin3, WANG Ling-yun3, SONG Yuan-da1,2, ZHAO Xin-he1,2(), REN Xiao-jie1,2()
Received:
2024-01-04
Published:
2024-06-26
Online:
2024-05-15
摘要:
二十二碳六烯酸(DHA)作为人体必需的多不饱和脂肪酸,在维护心血管健康、抗癌、支持视觉和脑功能等方面至关重要。传统的深海鱼油提取DHA方法存在鱼腥味重、工艺繁琐等问题,迫使研究者寻求更为高效、环保的替代方案。破囊壶菌(Thraustochytrids)凭借其生长迅速、低重金属污染以及高DHA含量的特性,成为工业化生产DHA的潜力微生物之一。当前在破囊壶菌发酵生产DHA的过程中,依然需要解决一系列关键问题,包括提高发酵产量、降低成本等。本文旨在全面阐述破囊壶菌发酵生产DHA的研究现状,包括菌株筛选与改良、DHA生物合成途径、遗传转化及代谢工程、发酵控制策略等方面。首先,总结归纳了对野生型菌株的自然筛选和诱变改良等方法,不断提高破囊壶菌中DHA产油量。其次,详细介绍了破囊壶菌DHA合成途径的研究进展,着重分析了生物合成途径中关键辅助因子在DHA生产中的作用。此外,概述了外源DNA传递到破囊壶菌细胞的遗传转化技术的应用现状,为提高其遗传转化效率和稳定性提供重要参考。在DHA代谢调控方面,探讨了氮限制对DHA合成的促进作用以及温度和氧气供应对生产效率的影响。最后,对利用破囊壶菌生产DHA存在的主要瓶颈问题和未来发展趋势进行了总结,以推动其在医药、保健品和食品等领域的广泛应用,实现工业规模下的高效生产。
张美玉, 赵玉斌, 王灵云, 宋元达, 赵新河, 任晓洁. 微藻破囊壶菌产功能性脂肪酸DHA研究进展[J]. 生物技术通报, 2024, 40(6): 81-94.
ZHANG Mei-yu, ZHAO Yu-bin, WANG Ling-yun, SONG Yuan-da, ZHAO Xin-he, REN Xiao-jie. Research Progress in the Production of Functional Fatty Acid DHA by Microalga Thraustochytrids[J]. Biotechnology Bulletin, 2024, 40(6): 81-94.
菌株 Bacterial species | 来源 Source | 产油特性 Oil production characteristics | 参考文献Reference |
---|---|---|---|
橙黄壶菌ZJWZ-7 Aurantiochytrium ZJWZ-7 | 中国沿海红树林 Chinese coastal mangroves | DHA和饱和脂肪酸分别达到1.66 g/L和1.68 g/L DHA and saturated fatty acids reach 1.66 g/L and 1.68 g/L respectively | [ |
裂殖壶菌LU310 Schizochytrium sp. LU310 | 温州红树林 Wenzhou angroves | DHA产量高达24.74 g/L DHA production reaches as high as 24.74 g/L | [ |
裂殖壶菌ABC101 Schizochytrium sp. ABC101 | 海水中 Seawater | DHA达到11.0 g/L DHA reaches 11.0 g/L | [ |
裂殖壶菌S31 Schizochytrium sp. S31 | 美国加利福尼亚河 California River, USA | DHA产率高达300 mg/(L·d) DHA productivity reaches 300 mg/(L·d) | [ |
橙黄壶菌TL18 Aurantiochytrium sp. TL18 | 英国水域 British waters | DHA产量占多不饱和脂肪酸的83% DHA production accounts for 83% of polyunsaturated fatty acids | [ |
橙黄壶菌YB-05 Aurantiochytrium sp. YB-05 | 沙特阿拉伯红海沿岸的腐叶中Decayed leaves from the Red Sea in Saudi Arabia | DHA含量为24.85% DHA content is 24.85% | [ |
橙黄壶菌SW1 Aurantiochytrium sp. SW1 | 马来西亚 Malaysia | DHA产量达到3.6 g/L DHA production reaches 3.6 g/L | [ |
表1 自然界中筛选得到的高产油菌株
Table 1 High oil-producing strains selected from nature
菌株 Bacterial species | 来源 Source | 产油特性 Oil production characteristics | 参考文献Reference |
---|---|---|---|
橙黄壶菌ZJWZ-7 Aurantiochytrium ZJWZ-7 | 中国沿海红树林 Chinese coastal mangroves | DHA和饱和脂肪酸分别达到1.66 g/L和1.68 g/L DHA and saturated fatty acids reach 1.66 g/L and 1.68 g/L respectively | [ |
裂殖壶菌LU310 Schizochytrium sp. LU310 | 温州红树林 Wenzhou angroves | DHA产量高达24.74 g/L DHA production reaches as high as 24.74 g/L | [ |
裂殖壶菌ABC101 Schizochytrium sp. ABC101 | 海水中 Seawater | DHA达到11.0 g/L DHA reaches 11.0 g/L | [ |
裂殖壶菌S31 Schizochytrium sp. S31 | 美国加利福尼亚河 California River, USA | DHA产率高达300 mg/(L·d) DHA productivity reaches 300 mg/(L·d) | [ |
橙黄壶菌TL18 Aurantiochytrium sp. TL18 | 英国水域 British waters | DHA产量占多不饱和脂肪酸的83% DHA production accounts for 83% of polyunsaturated fatty acids | [ |
橙黄壶菌YB-05 Aurantiochytrium sp. YB-05 | 沙特阿拉伯红海沿岸的腐叶中Decayed leaves from the Red Sea in Saudi Arabia | DHA含量为24.85% DHA content is 24.85% | [ |
橙黄壶菌SW1 Aurantiochytrium sp. SW1 | 马来西亚 Malaysia | DHA产量达到3.6 g/L DHA production reaches 3.6 g/L | [ |
菌株 Bacterial species | 突变方法 Mutation method | 结果 Result | 参考文献Reference |
---|---|---|---|
橙黄壶菌CG Aurantiochytrium sp.CGMCC 6208 | 重离子诱变 Heavy ion mutagenesis | DHA产量由21 g/L提高到27 g/L DHA production increased from 21 g/L to 27 g/L | [ |
橙黄壶菌SW1 Aurantiochytrium sp. SW1 | ARTP | 生物量、油脂和DHA产量分别提高30%、65%和80% Biomass, lipid content, and DHA production increased by 30%, 65%, and 80%, respectively | [ |
裂殖壶菌B4D1 Schizochytrium sp. B4D1 | 紫外诱变 UV mutagenesis | DHA含量达到总油脂的41.24%,提高了11.70% The DHA content reached 41.24% of total lipids, increasing by 11.70% | [ |
裂殖壶菌SR21 Schizochytrium limacinum SR21 | ARTP | DHA产量达到6. 59 g/L,提高了46.12% The DHA production reached 6.59 g/L, representing a 46.12% increase | [ |
裂殖壶菌ATCC20888 Schizochytrium sp. ATCC20888 | 低能离子诱变 Low-energy ion mutagenesis | 生物量为48.01 g/L,DHA产量最高为6.52 g/L Biomass was 48.01 g/L, with a maximum DHA production of 6.52 g/L | [ |
橙黄壶菌PKU#SW7 Aurantiochytrium sp. PKU#SW7 | 紫外诱变 UV mutagenesis | 生物量为6.62 g/L,DHA在脂肪酸中所占比例由29.97%增加到33.43% Biomass was 6.62 g/L, and the proportion of DHA in fatty acids increased from 29.97% to 33.43% | [ |
裂殖壶菌M209059 Schizochytrium sp. M209059 | NTG结合紫外诱变 NTG combined with UV mutagenesis | DHA占总脂肪酸的比例达到56.22%,提高了38.88% The proportion of DHA in total fatty acids reached 56.22%, representing an increase of 38.88% | [ |
裂殖壶菌 Schizochytrium sp. | 甲烷磺酸乙酯(EMS)结合紫外诱变 EMS combined with UV mutagenesis | 脂质含量和DHA产量分别提高了8.53%和21.58% Lipid content and DHA production increased by 8.53% and 21.58%, respectively | [ |
裂殖壶菌31 Schizochytrium sp. 31 | EMS和ARTP复合诱变 EMS and ARTP combined mutagenesis | DHA产量达到7.2 g/L,比亲本菌株提高35.6% The DHA production reached 7.2 g/L, representing a 35.6% increase compared to the parental strain | [ |
裂殖壶菌ALE70 Schizochytrium sp. ALE70 | 耐热性ALE Heat-resistant ALE | 油脂产量和DHA产量分别提高了4.31倍和4.33倍 The lipid production and DHA production increased by 4.31-fold and 4.33-fold, respectively | [ |
裂殖壶菌HX-308 Schizochytrium sp. HX-308 | 高氧ALE High-oxygen ALE | 细胞干重达到84.34 g/L,DHA产量为26.40 g/L Cell dry weight reached 84.34 g/L, and DHA production was 26.40 g/L | [ |
低温与高盐度双因子协同ALE Synergistic ALE of Low Temperature and High Salinity | DHA产量为38.12 g/L,比亲本菌株高57.52% The DHA production is 38.12 g/L, which is 57.52% higher than the parental strain | [ | |
裂殖壶菌 Schizochytrium limacinum B4D1 | 低温ALE Low-temperature ALE | DHA含量提高了11.22% DHA content increased by 11.22% | [ |
表2 菌株改良高产油藻株研究成果
Table 2 Research results on the improvement of high oil-producing algal strains
菌株 Bacterial species | 突变方法 Mutation method | 结果 Result | 参考文献Reference |
---|---|---|---|
橙黄壶菌CG Aurantiochytrium sp.CGMCC 6208 | 重离子诱变 Heavy ion mutagenesis | DHA产量由21 g/L提高到27 g/L DHA production increased from 21 g/L to 27 g/L | [ |
橙黄壶菌SW1 Aurantiochytrium sp. SW1 | ARTP | 生物量、油脂和DHA产量分别提高30%、65%和80% Biomass, lipid content, and DHA production increased by 30%, 65%, and 80%, respectively | [ |
裂殖壶菌B4D1 Schizochytrium sp. B4D1 | 紫外诱变 UV mutagenesis | DHA含量达到总油脂的41.24%,提高了11.70% The DHA content reached 41.24% of total lipids, increasing by 11.70% | [ |
裂殖壶菌SR21 Schizochytrium limacinum SR21 | ARTP | DHA产量达到6. 59 g/L,提高了46.12% The DHA production reached 6.59 g/L, representing a 46.12% increase | [ |
裂殖壶菌ATCC20888 Schizochytrium sp. ATCC20888 | 低能离子诱变 Low-energy ion mutagenesis | 生物量为48.01 g/L,DHA产量最高为6.52 g/L Biomass was 48.01 g/L, with a maximum DHA production of 6.52 g/L | [ |
橙黄壶菌PKU#SW7 Aurantiochytrium sp. PKU#SW7 | 紫外诱变 UV mutagenesis | 生物量为6.62 g/L,DHA在脂肪酸中所占比例由29.97%增加到33.43% Biomass was 6.62 g/L, and the proportion of DHA in fatty acids increased from 29.97% to 33.43% | [ |
裂殖壶菌M209059 Schizochytrium sp. M209059 | NTG结合紫外诱变 NTG combined with UV mutagenesis | DHA占总脂肪酸的比例达到56.22%,提高了38.88% The proportion of DHA in total fatty acids reached 56.22%, representing an increase of 38.88% | [ |
裂殖壶菌 Schizochytrium sp. | 甲烷磺酸乙酯(EMS)结合紫外诱变 EMS combined with UV mutagenesis | 脂质含量和DHA产量分别提高了8.53%和21.58% Lipid content and DHA production increased by 8.53% and 21.58%, respectively | [ |
裂殖壶菌31 Schizochytrium sp. 31 | EMS和ARTP复合诱变 EMS and ARTP combined mutagenesis | DHA产量达到7.2 g/L,比亲本菌株提高35.6% The DHA production reached 7.2 g/L, representing a 35.6% increase compared to the parental strain | [ |
裂殖壶菌ALE70 Schizochytrium sp. ALE70 | 耐热性ALE Heat-resistant ALE | 油脂产量和DHA产量分别提高了4.31倍和4.33倍 The lipid production and DHA production increased by 4.31-fold and 4.33-fold, respectively | [ |
裂殖壶菌HX-308 Schizochytrium sp. HX-308 | 高氧ALE High-oxygen ALE | 细胞干重达到84.34 g/L,DHA产量为26.40 g/L Cell dry weight reached 84.34 g/L, and DHA production was 26.40 g/L | [ |
低温与高盐度双因子协同ALE Synergistic ALE of Low Temperature and High Salinity | DHA产量为38.12 g/L,比亲本菌株高57.52% The DHA production is 38.12 g/L, which is 57.52% higher than the parental strain | [ | |
裂殖壶菌 Schizochytrium limacinum B4D1 | 低温ALE Low-temperature ALE | DHA含量提高了11.22% DHA content increased by 11.22% | [ |
菌株 Bacterial species | 基因 Gene | 电击参数 Electric shock parameters | 结果 Result | 参考文献 Reference |
---|---|---|---|---|
裂殖壶菌S31 Schizochytrium sp. S31 | 过表达来自隐甲藻的苹果酸酶和高山被孢霉的ELO3基因 Overexpression of malate synthase from Thalassiosira pseudonana and ELO3 gene from Mortierella alpina | 2 000 V, 50 μF, 200 Ω | DHA产量为3.54 g/L,占细胞干重的26.70% DHA production reached 3.54 g/L, accounting for 26.70% of cell dry weight | [ |
裂殖壶菌ATCC 20888 Schizochytrium sp. ATCC 20888 | 过表达硫氧还蛋白还原酶、乙醛脱氢酶、谷胱甘肽过氧化物酶和葡萄糖-6 -磷酸脱氢酶的基因 Overexpression of genes encoding thioredoxin reductase, aldehyde dehydrogenase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase | 1 500 V, 200 Ω, 50 μF | DHA产量达到13.3 g/L DHA production reached 13.3 g/L | [ |
橙黄壶菌SZU445 Aurantiochytrium sp. SZU445 | 敲除2,4 -二烯基辅酶A还原酶基因 Knockout of the gene encoding 2,4-dienoyl-CoA reductase | 1 500 V, 50 μF, 200 Ω | DHA产量占总脂肪酸的53.97% DHA production accounted for 53.97% of total fatty acids | [ |
裂殖壶菌H016 Schizochytrium sp. H016 | 过表达内源葡萄糖- 6 -磷酸脱氢酶基因 Overexpression of endogenous glucose-6-phosphate dehydrogenase gene | 1 400 V, 200 Ω, 50 μF | DHA产量达到17.01 g/L,提高了31.47% The DHA production reached 17.01 g/L, representing a 31.47% increase | [ |
裂殖壶菌TIO110 Schizochytrium sp. TIO1101 | 过表达大肠杆菌乙酰辅酶A合成酶基因 Overexpression of Escherichia coli acetyl-CoA synthase gene | 2 100 V, 4.5 ms | 生物量和脂肪酸比例分别增加了29.9%和11.3% Biomass and fatty acid proportion increased by 29.9% and 11.3%, respectively | [ |
裂殖壶菌ATCC1381 Schizochytrium sp. ATCC1381 | 过表达丙二酰辅酶A转移酶 Overexpression of acyltransferase | 7.5 kV/cm, 50 μF, 50 Ω | 总脂产量提高到110.5 g/L,比野生菌株提高39.6%,DHA产量为47.39 g/L Total lipid production increased to 110.5 g/L, a 39.6% increase compared to the wild-type strain, with DHA production at 47.39 g/L | [ |
裂殖壶菌PKU#Mn42 Schizochytrium sp. PKU#Mn42 | 抗氧化基因超氧化物歧化酶 Antioxidant gene superoxide dismutase | 1 000 V, 50 μF, 500 Ω | 多不饱和脂肪酸(PUFA)产量增加1.37 倍 Polyunsaturated fatty acids(PUFA)production increased by 1.37 times | [ |
表3 电转化法实现菌株高产DHA研究成果
Table 3 Research outcomes of high DHA production in strains achieved by electric conversion method
菌株 Bacterial species | 基因 Gene | 电击参数 Electric shock parameters | 结果 Result | 参考文献 Reference |
---|---|---|---|---|
裂殖壶菌S31 Schizochytrium sp. S31 | 过表达来自隐甲藻的苹果酸酶和高山被孢霉的ELO3基因 Overexpression of malate synthase from Thalassiosira pseudonana and ELO3 gene from Mortierella alpina | 2 000 V, 50 μF, 200 Ω | DHA产量为3.54 g/L,占细胞干重的26.70% DHA production reached 3.54 g/L, accounting for 26.70% of cell dry weight | [ |
裂殖壶菌ATCC 20888 Schizochytrium sp. ATCC 20888 | 过表达硫氧还蛋白还原酶、乙醛脱氢酶、谷胱甘肽过氧化物酶和葡萄糖-6 -磷酸脱氢酶的基因 Overexpression of genes encoding thioredoxin reductase, aldehyde dehydrogenase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase | 1 500 V, 200 Ω, 50 μF | DHA产量达到13.3 g/L DHA production reached 13.3 g/L | [ |
橙黄壶菌SZU445 Aurantiochytrium sp. SZU445 | 敲除2,4 -二烯基辅酶A还原酶基因 Knockout of the gene encoding 2,4-dienoyl-CoA reductase | 1 500 V, 50 μF, 200 Ω | DHA产量占总脂肪酸的53.97% DHA production accounted for 53.97% of total fatty acids | [ |
裂殖壶菌H016 Schizochytrium sp. H016 | 过表达内源葡萄糖- 6 -磷酸脱氢酶基因 Overexpression of endogenous glucose-6-phosphate dehydrogenase gene | 1 400 V, 200 Ω, 50 μF | DHA产量达到17.01 g/L,提高了31.47% The DHA production reached 17.01 g/L, representing a 31.47% increase | [ |
裂殖壶菌TIO110 Schizochytrium sp. TIO1101 | 过表达大肠杆菌乙酰辅酶A合成酶基因 Overexpression of Escherichia coli acetyl-CoA synthase gene | 2 100 V, 4.5 ms | 生物量和脂肪酸比例分别增加了29.9%和11.3% Biomass and fatty acid proportion increased by 29.9% and 11.3%, respectively | [ |
裂殖壶菌ATCC1381 Schizochytrium sp. ATCC1381 | 过表达丙二酰辅酶A转移酶 Overexpression of acyltransferase | 7.5 kV/cm, 50 μF, 50 Ω | 总脂产量提高到110.5 g/L,比野生菌株提高39.6%,DHA产量为47.39 g/L Total lipid production increased to 110.5 g/L, a 39.6% increase compared to the wild-type strain, with DHA production at 47.39 g/L | [ |
裂殖壶菌PKU#Mn42 Schizochytrium sp. PKU#Mn42 | 抗氧化基因超氧化物歧化酶 Antioxidant gene superoxide dismutase | 1 000 V, 50 μF, 500 Ω | 多不饱和脂肪酸(PUFA)产量增加1.37 倍 Polyunsaturated fatty acids(PUFA)production increased by 1.37 times | [ |
[1] | Du F, Wang YZ, Xu YS, et al. Biotechnological production of lipid and terpenoid from thraustochytrids[J]. Biotechnol Adv, 2021, 48: 107725. |
[2] | Sweeney TE, Gaine SP, Michos ED. Eicosapentaenoic acid vs. docosahexaenoic acid for the prevention of cardiovascular disease[J]. Current Opinion in Endocrinology & Diabetes and Obesity, 2023, 30(2): 87-93. |
[3] | Ferreira I, Rauter AP, Bandarra NM. Marine sources of DHA-Rich phospholipids with anti-alzheimer effect[J]. Marine Drugs, 2022, 20(11): 662. |
[4] | Boyer-Diaz Z, Morata P, Aristu-Zabalza P, et al. Oxidative stress in chronic liver disease and portal hypertension: potential of DHA as nutraceutical[J]. Nutrients, 2020, 12(9): 2627. |
[5] | Barry AR, Dixon DL. Omega-3 fatty acids for the prevention of atherosclerotic cardiovascular disease[J]. Pharmacotherapy, 2021, 41(12): 1056-1065. |
[6] |
Goh KK, Chen CY, Chen CH, et al. Effects of omega-3 polyunsaturated fatty acids supplements on psychopathology and metabolic parameters in schizophrenia: a meta-analysis of randomized controlled trials[J]. J Psychopharmacol, 2021, 35(3): 221-235.
doi: 10.1177/0269881120981392 pmid: 33586517 |
[7] | West L, Yin Y, Pierce SR, et al. Docosahexaenoic acid(DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer[J]. Am J Cancer Res, 2020, 10(12): 4450. |
[8] |
Li J, Pora BL, Dong K, et al. Health benefits of docosahexaenoic acid and its bioavailability: A review[J]. Food Sci Nutr, 2021, 9(9): 5229-5243.
doi: 10.1002/fsn3.2299 pmid: 34532031 |
[9] | Ahmad A, Ashraf SS. Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy[J]. Algal Research, 2023: 103185. |
[10] | Katiyar R, Arora A. Health promoting functional lipids from microalgae pool: A review[J]. Algal Research, 2020, 46: 101800. |
[11] | Zhang AQ, Xie YX, He YD, et al. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes[J]. Bioresour Technol, 2019, 287: 121415. |
[12] | 李婧. 裂殖壶菌利用混合碳源发酵生产DHA的研究[D]. 无锡: 江南大学, 2015. |
Li J. A strategy of highly DHA production by Aurantiochytrium limacinum SR21 with mixed carbon sources[D]. Wuxi: Jiangnan University, 2015. | |
[13] | Wang QZ, Ye HK, Xie YX, et al. Culturable diversity and lipid production profile of labyrinthulomycete protists isolated from coastal mangrove habitats of China[J]. Mar Drugs, 2019, 17(5): 268. |
[14] | Ling XP, Guo J, Liu XT, et al. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid(DHA)by Schizochytrium sp. LU310[J]. Bioresour Technol, 2015, 184: 139-147. |
[15] | Ju JH, Ko DJ, Heo SY, et al. Regulation of lipid accumulation using nitrogen for microalgae lipid production in Schizochytrium sp. ABC101[J]. Renew Energy, 2020, 153: 580-587. |
[16] |
Xie YX, Wang GY. Mechanisms of fatty acid synthesis in marine fungus-like protists[J]. Appl Microbiol Biotechnol, 2015, 99(20): 8363-8375.
doi: 10.1007/s00253-015-6920-7 pmid: 26286514 |
[17] | Marchan LF, Lee Chang KJ, Nichols PD, et al. Screening of new British thraustochytrids isolates for docosahexaenoic acid(DHA)production[J]. J Appl Phycol, 2017, 29(6): 2831-2843. |
[18] | Abdel-Wahab MA, El-Samawaty AER MA, Elgorban AM, et al. Utilization of low-cost substrates for the production of high biomass, lipid and docosahexaenoic acid(DHA)using local native strain Aurantiochytrium sp. YB-05[J]. J King Saud Univ Sci, 2022, 34(7): 102224. |
[19] | Manikan V, Nazir MYM, Kalil MS, et al. A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters[J]. Algal Res, 2015, 9: 40-47 |
[20] |
Jaseera KV, Kaladharan P, Vijayan KK, et al. Isolation and phylogenetic identification of heterotrophic thraustochytrids from mangrove habitats along the southwest coast of India and prospecting their PUFA accumulation[J]. J Appl Phycol, 2019, 31(2): 1057-1068.
doi: 10.1007/s10811-018-1627-7 |
[21] | Cheng YR, Sun ZJ, Cui GZ, et al. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase[J]. Enzyme Microb Technol, 2016, 93/94: 182-190. |
[22] | Nazir Y, Phabakaran P, Halim H, et al. Strategic development of Aurantiochytrium sp. mutants with superior oxidative stress tolerance and glucose-6-phosphate dehydrogenase activity for enhanced DHA production through plasma mutagenesis coupled with chemical screening[J]. Front Nutr, 2022, 9: 876649. |
[23] | 张梦娣, 赫荣琳, 张东远, 等. 紫外诱变筛选高产EPA和DHA的裂殖壶菌[J]. 基因组学与应用生物学, 2021, 40(S3): 3055-3059. |
Zhang MD, He RL, Zhang DY, et al. Screening of Schizochytrium sp. with high EPA and DHA production by UV mutagenesis[J]. Genom Appl Biol, 2021, 40(S3): 3055-3059. | |
[24] | 龚定芳, 熊祎楠, 孙佼文, 等. 常压室温等离子体诱变选育DHA高产菌株[J]. 中国油脂, 2019, 44(3): 118-122. |
Gong DF, Xiong YN, Sun JW, et al. Mutation breeding Schizochytrium strains producing high-yield DHA via atmospheric and room temperature plasmas[J]. China Oils Fats, 2019, 44(3): 118-122. | |
[25] | Fu J, Chen T, Lu H, et al. Enhancement of docosahexaenoic acid production by low-energy ion implantation coupled with screening method based on Sudan black B staining in Schizochytrium sp[J]. Bioresour Technol, 2016, 221: 405-411. |
[26] | 梁园梅, 刘瑛, 李晶晶, 等. 高产DHA破囊壶菌Aurantiochytrium sp. PKU#SW7诱变株的筛选[J]. 微生物学通报, 2016, 43(2): 457-464. |
Liang YM, Liu Y, Li JJ, et al. Screening of high docosahexanoic acid yield mutants of Aurantiochytrium sp. PKU#SW7[J]. Microbiol China, 2016, 43(2): 457-464. | |
[27] |
Lian M, Huang H, Ren LJ, et al. Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay[J]. Appl Biochem Biotechnol, 2010, 162(4): 935-941.
doi: 10.1007/s12010-009-8865-8 pmid: 19967469 |
[28] | Meng CF, Peng BZ. Establishment of a high-throughput screening platform to screen Schizochytrium sp. with a high yield of DHA[J]. Algal Res, 2023, 74: 103201. |
[29] | 赵犇, 王武, 李昌灵, 等. EMS-ARTP复合诱变选育高产DHA裂殖壶菌[J]. 食品与机械, 2018, 34(2): 19-24. |
Zhao B, Wang W, Li CL, et al. Enhancement of docosahexaenoic acid production in Schizochytrium sp. 31 combining ethylmethylsulfone and atmospheric and room temperature plasma treatment[J]. Food Mach, 2018, 34(2): 19-24. | |
[30] | Hu XC, Tang XY, Bi ZQ, et al. Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid[J]. Algal Res, 2021, 54: 102212. |
[31] | Sun XM, Ren LJ, Ji XJ, et al. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis[J]. Bioresour Technol, 2016, 211: 374-381. |
[32] | Sun XM, Ren LJ, Bi ZQ, et al. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp[J]. Biotechnol Biofuels, 2018, 11: 65. |
[33] | Li DM, Zhang K, Chen LM, et al. Selection of Schizochytrium limacinum mutants based on butanol tolerance[J]. Electron J Biotechnol, 2017, 30: 58-63. |
[34] | Chatdumrong W, Yongmanitchai W, Limtong S, et al. Optimization of docosahexaenoic acid(DHA)production and improvement of astaxanthin content in a mutant Schizochytrium limacinum isolated from mangrove forest in Thailand[J]. Kasetsart J Nat Sci, 2007, 41(2): 324-334. |
[35] | 许晓路, 张德勇. 海洋微藻多不饱和脂肪酸生物合成机制研究进展[J]. 中国粮油学报, 2023, 38(10): 259-266. |
Xu XL, Zhang DY. Review on biosynthesis mechanism research of polyunsaturated fatty acids in marine microalgae[J]. J Chin Cereals Oils Assoc, 2023, 38(10): 259-266. | |
[36] | Rau EM, Aasen IM, Bartosova Z, et al. Utilizing lipidomics and fatty acid synthase inhibitors to explore lipid accumulation in two thraustochytrid species[J]. Algal Res, 2023, 71: 103091. |
[37] | Chang M, Zhang T, Li LL, et al. Choreography of multiple omics reveals the mechanism of lipid turnover in Schizochytrium sp. S31[J]. Algal Res, 2021, 54: 102182. |
[38] | Castro-Cosio P, Monreal-Escalante E, Romero-Geraldo R, et al. Natural and recombinant bioactive compounds from Schizochytrium sp.: recent advances and future prospects[J]. Algal Res, 2023, 75: 103273. |
[39] |
叶会科, 王秋珍, 何耀东, 等. 破囊壶菌发酵生产DHA的研究进展[J]. 化工进展, 2020, 39(8): 3235-3245.
doi: 10.16085/j.issn.1000-6613.2019-1764 |
Ye HK, Wang QZ, He YD, et al. Research progress in DHA production by thraustochytrids[J]. Chem Ind Eng Prog, 2020, 39(8): 3235-3245.
doi: 10.16085/j.issn.1000-6613.2019-1764 |
|
[40] | Sun XM, Ren LJ, Zhao QY, et al. Enhancement of lipid accumulation in microalgae by metabolic engineering[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(4): 552-566. |
[41] | Cui GZ, Ma ZX, Liu YJ, et al. Overexpression of glucose-6-phosphate dehydrogenase enhanced the polyunsaturated fatty acid composition of Aurantiochytrium sp. SD116[J]. Algal Res, 2016, 19: 138-145. |
[42] | Bouras S, Antoniadis D, Kountrias G, et al. Effect of pH on Schizochytrium limacinum production grown using crude glycerol and biogas digestate effluent[J]. Agronomy, 2022, 12(2): 364. |
[43] | Chen W, Zhou PP, Zhang M, et al. Transcriptome analysis reveals that up-regulation of the fatty acid synthase gene promotes the accumulation of docosahexaenoic acid in Schizochytrium sp. S056 when glycerol is used[J]. Algal Res, 2016, 15: 83-92. |
[44] | Ji XJ, Mo KQ, Ren LJ, et al. Genome sequence of Schizochytrium sp. CCTCC M209059, an effective producer of docosahexaenoic acid-rich lipids[J]. Genome Announc, 2015, 3(4): e00819-e00815. |
[45] | Liu B, Ertesvåg H, Aasen IM, et al. Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66[J]. Genom Data, 2016, 8: 115-116. |
[46] | Prabhakaran P, Raethong N, Nazir Y, et al. Whole genome analysis and elucidation of docosahexaenoic acid(DHA)biosynthetic pathway in Aurantiochytrium sp. SW1[J]. Gene, 2022, 846: 146850. |
[47] | Hu F, Clevenger AL, Zheng P, et al. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism[J]. Biotechnol Biofuels, 2020, 13: 172. |
[48] | Liang LM, Zheng XH, Fan WF, et al. Genome and transcriptome analyses provide insight into the omega-3 long-chain polyunsaturated fatty acids biosynthesis of Schizochytrium limacinum SR21[J]. Front Microbiol, 2020, 11: 687. |
[49] | Rau EM, Ertesvåg H. Method development progress in genetic engineering of thraustochytrids[J]. Mar Drugs, 2021, 19(9): 515. |
[50] | Kumar NM, Muthukumaran C, Sharmila G, et al. Genetically modified organisms and its impact on the enhancement of bioremediation[M]// Varjani S, Agarwal A, Gnansounou E, et al. Bioremediation: Applications for Environmental Protection and Management. Singapore: Springer, 2018: 53-76. |
[51] | Mosey M, Douchi D, Knoshaug EP, et al. Methodological review of genetic engineering approaches for non-model algae[J]. Algal Research, 2021, 54: 102221. |
[52] | Wang FZ, Bi YL, Diao JJ, et al. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31[J]. Biotechnol Biofuels, 2019, 12: 141. |
[53] | Han X, Li ZH, Wen Y, et al. Overproduction of docosahexaenoic acid in Schizochytrium sp. through genetic engineering of oxidative stress defense pathways[J]. Biotechnol Biofuels, 2021, 14(1): 70. |
[54] | Liang ST, Yang XW, Zhu XY, et al. Metabolic engineering to improve docosahexaenoic acid production in marine protist Aurantiochytrium sp. by disrupting 2, 4-dienoyl-CoA reductase[J]. Front Mar Sci, 2022, 9: 939716. |
[55] | Feng YM, Zhu YM, Bao ZD, et al. Construction of glucose-6-phosphate dehydrogenase overexpression strain of Schizochytrium sp. H016 to improve docosahexaenoic acid production[J]. Mar Drugs, 2022, 21(1): 17. |
[56] | Yan JF, Cheng RB, Lin XZ, et al. Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium[J]. Appl Microbiol Biotechnol, 2013, 97(5): 1933-1939. |
[57] | Li ZP, Meng T, Ling XP, et al. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production[J]. J Agric Food Chem, 2018, 66(21): 5382-5391. |
[58] |
Zhang S, He YD, Sen B, et al. Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism[J]. Metab Eng Commun, 2018, 6: 39-48.
doi: 10.1016/j.meteno.2018.03.002 pmid: 29896446 |
[59] |
Ortiz-Matamoros MF, Villanueva MA, Islas-Flores T. Genetic transformation of cell-walled plant and algae cells: delivering DNA through the cell wall[J]. Brief Funct Genomics, 2018, 17(1): 26-33.
doi: 10.1093/bfgp/elx014 pmid: 29365068 |
[60] | Sharma AK, Nymark M, Sparstad T, et al. Transgene-free genome editing in marine algae by bacterial conjugation - comparison with biolistic CRISPR/Cas9 transformation[J]. Sci Rep, 2018, 8(1): 14401. |
[61] | Bastiaens L, Van Roy S, Thomassen G, et al. Biorefinery of algae[M]// Microalgae-Based Biofuels and Bioproducts. Amsterdam: Elsevier, 2017: 327-345. |
[62] | Quach TN, Sato SJ, Behrens MR, et al. A facile Agrobacterium-mediated transformation method for the model unicellular green algae Chlamydomonas reinhardtii[J]. Vitro Cell Dev Biol Plant, 2023, 59(6): 671-683. |
[63] | Chen JE, Barbrook AC, Cui GX, et al. The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods[J]. PLoS One, 2019, 14(2): e0211936. |
[64] | Cheng RB, Ma RJ, Li K, et al. Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium[J]. Microbiol Res, 2012, 167(3): 179-186. |
[65] |
Lippmeier JC, Crawford KS, Owen CB, et al. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp[J]. Lipids, 2009, 44(7): 621-630.
doi: 10.1007/s11745-009-3311-9 pmid: 19495823 |
[66] | Sakaguchi K, Matsuda T, Kobayashi T, et al. Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids[J]. Appl Environ Microbiol, 2012, 78(9): 3193-3202. |
[67] | 陈浩. 裂殖壶菌培养基优化、菌种选育及遗传转化体系的研究[D]. 青岛: 中国海洋大学, 2014. |
Chen H. Study on medium optimization, strain breeding and genetic transformation system of Aurantiochytrium limacinum[D]. Qingdao: Ocean University of China, 2014. | |
[68] | 王澍, 吕小义, 张静雯, 等. 不同碳氮源浓度和培养温度对裂殖壶菌产DHA的影响[J]. 中国油脂, 2015, 40(10): 74-77. |
Wang S, Lü XY, Zhang JW, et al. Impacts of different concentrations of carbon and nitrogen sources and culture temperature on DHA production by Schizochytrium sp[J]. China Oils Fats, 2015, 40(10): 74-77. | |
[69] | Wang DS, Yu XJ, Zhu XY, et al. Transcriptome mechanism of utilizing corn steep liquor as the sole nitrogen resource for lipid and DHA biosynthesis in marine oleaginous protist Aurantiochytrium sp[J]. Biomolecules, 2019, 9(11): 695. |
[70] | Jiang X, Zhang J, Zhao J, et al. Regulation of lipid accumulation in Schizochytrium sp. ATCC 20888 in response to different nitrogen sources[J]. Euro J Lipid Sci & Tech, 2017, 119(10): 1700025. |
[71] | Xu J, Zhu YJ, Li HC, et al. Alanine mother liquor as a nitrogen source for docosahexaenoic acid production by Schizochytrium sp. B4D1[J]. Electron J Biotechnol, 2018, 35: 10-17. |
[72] | Ju JH, Oh BR, Ryu SK, et al. Production of lipid containing high levels of docosahexaenoic acid by cultivation of Aurantiochytrium sp. KRS101 using Jerusalem artichoke extract[J]. Biotechnol Bioprocess Eng, 2018, 23(6): 726-732. |
[73] | Yin FW, Zhu SY, Guo DS, et al. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue[J]. Bioresour Technol, 2019, 271: 118-124. |
[74] | 吴钧坚. 温度胁迫下裂殖壶菌的脂肪酸合成及转录组分析[D]. 福州: 福建师范大学, 2021. |
Wu JJ. Fatty acid synthesis and transcriptome analysis on temperature stress in Schizochytrium[D]. Fuzhou: Fujian Normal University, 2021. | |
[75] | 周芬, 张明亮, 黄建忠, 等. 变温对破囊壶菌FJN-10脂肪酸组分和蛋白质组的影响[J]. 生物技术, 2015, 25(4): 384-390. |
Zhou F, Zhang ML, Huang JZ, et al. Effect of temperature shift on polyunsaturated fatty acids production and proteome of Thraustochytrium sp. FJN-10[J]. Biotechnology, 2015, 25(4): 384-390. | |
[76] |
张明亮, 王俊, 翁可欣, 等. 变温调控破囊壶菌发酵生产二十二碳六烯酸[J]. 食品与发酵工业, 2022, 48(3): 15-19.
doi: 10.13995/j.cnki.11-1802/ts.028351 |
Zhang ML, Wang J, Weng KX, et al. Docosahexaenoic acid production by Aurantiochytrium sp. FN21 under temperature shifting management[J]. Food Ferment Ind, 2022, 48(3): 15-19. | |
[77] |
Qu L, Ji XJ, Ren LJ, et al. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient[J]. Lett Appl Microbiol, 2011, 52(1): 22-27.
doi: 10.1111/j.1472-765X.2010.02960.x pmid: 21070268 |
[78] | Bi ZQ, Ren LJ, Hu XC, et al. Transcriptome and gene expression analysis of docosahexaenoic acid producer Schizochytrium sp. under different oxygen supply conditions[J]. Biotechnol Biofuels, 2018, 11: 249. |
[79] | Ren LJ, Ji XJ, Huang H, et al. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp[J]. Appl Microbiol Biotechnol, 2010, 87(5): 1649-1656. |
[80] |
任俊, 吴赵梅, 陈志炎. “葡萄糖充足-溶解氧浓度周期” 组合控制策略强化Schizochytrium sp.S31生产二十二碳六烯酸[J]. 食品与发酵工业, 2022, 48(18): 101-106.
doi: 10.13995/j.cnki.11-1802/ts.032158 |
Ren J, Wu ZM, Chen ZY. Enhancing DHA production by Schizochytrium sp. S31 via combinational control strategy of “glucose sufficient-periodic dissolved oxygen concentration operation”[J]. Food Ferment Ind, 2022, 48(18): 101-106. | |
[81] | Ruenwai R, Neiss A, Laoteng K, et al. Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress[J]. Biotechnol J, 2011, 6(3): 343-356. |
[82] | Zhang S, Chen XH, Sen B, et al. Exogenous antioxidants improve the accumulation of saturated and polyunsaturated fatty acids in Schizochytrium sp. PKU# Mn4[J]. Marine Drugs, 2021, 19(10): 559. |
[83] | Nazir Y, Halim H, Prabhakaran P, et al. Different classes of phytohormones act synergistically to enhance the growth, lipid and DHA biosynthetic capacity of Aurantiochytrium sp. SW1[J]. Biomolecules, 2020, 10(5): 755. |
[84] | Zhang L, Zhao HY, Lai YQ, et al. Improving docosahexaenoic acid productivity of Schizochytrium sp. by a two-stage AEMR/shake mixed culture mode[J]. Bioresour Technol, 2013, 142: 719-722. |
[1] | 梅显军, 宋慧洋, 李京昊, 梅超, 宋倩娜, 冯瑞云, 陈喜明. 马铃薯StDof5的克隆及表达分析[J]. 生物技术通报, 2024, 40(3): 181-192. |
[2] | 何思成, 张紫瑗, 韩雨晴, 苗琳, 张翠英, 于爱群. 解脂耶氏酵母细胞工厂生产多不饱和脂肪酸的研究进展[J]. 生物技术通报, 2024, 40(1): 72-85. |
[3] | 李亮, 徐姗姗, 姜艳军. 生物合成法生产麦角硫因的研究进展[J]. 生物技术通报, 2024, 40(1): 86-99. |
[4] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[5] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[6] | 赵思佳, 王晓璐, 孙纪录, 田健, 张杰. 代谢工程改造毕赤酵母生产赤藓糖醇[J]. 生物技术通报, 2023, 39(8): 137-147. |
[7] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[8] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[9] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[10] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[11] | 李海宁, 张红兵, 耿革霞, 李冉, 贾振华. 非天然氨基酸的应用及生物合成策略[J]. 生物技术通报, 2023, 39(12): 43-55. |
[12] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
[13] | 孙威, 张艳, 王聿晗, 徐僡, 徐小蓉, 鞠志刚. 马缨杜鹃Rd3GT1的克隆及对矮牵牛花色形成的影响[J]. 生物技术通报, 2022, 38(9): 198-206. |
[14] | 陆新华, 孙德权, 张秀梅. 介孔硅纳米粒作为植物细胞转基因载体的研究[J]. 生物技术通报, 2022, 38(7): 194-204. |
[15] | 杨佳慧, 孙玉萍, 陆雅宁, 刘欢, 卢存福, 陈玉珍. 拟南芥AtTERT对大肠杆菌非生物胁迫抗性的影响[J]. 生物技术通报, 2022, 38(2): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||