生物技术通报 ›› 2025, Vol. 41 ›› Issue (12): 74-81.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0718

• 技术与方法 • 上一篇    下一篇

代谢工程改造益生菌E. coli Nissle 1917合成靛玉红

毛李晶1,2(), 金晓萱3(), 施婉婷3, 胡飞杨3, 张苑蓉1, 熊亮斌2,3(), 任璐1()   

  1. 1.上海健康医学院医学技术学院,上海 201318
    2.上海中医药大学研究生院,上海 201203
    3.上海健康医学院药学院,上海 201318
  • 收稿日期:2025-07-04 出版日期:2025-12-26 发布日期:2026-01-06
  • 通讯作者: 任璐,女,副教授,硕士生导师,研究方向 :乳品及功能因子的开发与检测;E-mail: renl@sumhs.edu.cn
    熊亮斌,男,副教授,硕士生导师,研究方向 :合成生物学;E-mail: xionglb@sumhs.edu.cn
  • 作者简介:毛李晶,女,硕士研究生,研究方向 :益生菌合成生物学;E-mail: gtmastjk@163.com
    毛李晶,女,硕士研究生,研究方向 :益生菌合成生物学;E-mail: gtmastjk@163.com
  • 基金资助:
    国家自然科学基金项目(32100067)

Modifying the Probiotic Escherichia coli Nissle 1917 for the Biosynthesis of Indirubin via Metabolic Engineering

MAO Li-jing1,2(), JIN Xiao-xuan3(), SHI Wan-ting3, HU Fei-yang3, ZHANG Yuan-rong1, XIONG Liang-bin2,3(), REN Lu1()   

  1. 1.The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318
    2.Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203
    3.School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318
  • Received:2025-07-04 Published:2025-12-26 Online:2026-01-06

摘要:

目的 靛玉红源于传统中药青黛,是一种具有广谱抗菌、抗炎及抗肿瘤活性的双吲哚环类天然活性成分,在临床主要被用于联合给药治疗慢性粒细胞白血病、银屑病等。探索利用安全的益生菌大肠杆菌Nissle 1917(EcN)为底盘,构建靛玉红的生物合成体系,以开发此中药材活性成分的绿色供应体系。 方法 基于EcN天然内源质粒的工程化改造,系统评估利用噬甲基菌Methylophaga sp. SK1来源的黄素单加氧酶fmo及其突变体(fmoK223RfmoK223R/D317S ),构建靛玉红合成途径的产物输出效率。结合代谢工程改造,敲除色氨酸合成途径的竞争性支路关键基因,包括苯丙氨酸合成关键基因pheA及酪氨酸合成关键基因tyrA;以此为基础,再行失活三羧酸循环的上游途径基因,包括丙酮酸激酶基因pykA和磷酸烯醇式丙酮酸羧化酶基因ppc。最后,通过缺失色氨酸途径中的阻遏蛋白基因trpR,同时强化色氨酸途径中抗反馈抑制的trpES40F 等,进一步提升产物合成水平。 结果 经250 mL摇瓶(装液量50 mL)培养48 h显示,靛玉红产量达(176.9 ± 4.5)mg/L,相较于仅携带野生型fmo基因的亲本菌株提升约3.5倍,5 L发酵罐产量为(379.3 ± 12.3)mg/L。 结论 基于益生菌EcN内源质粒携带异源黄素单加氧酶突变体基因fmoK223R,结合对色氨酸前体供应途径的代谢工程改造,获得的靛玉红产量达300 mg/L以上,展现出EcN作为细胞工厂生物合成传统中药活性成分的优良潜力。

关键词: 大肠杆菌Nissle 1917, 黄素单加氧酶bFMO, 中药青黛, 靛玉红, 生物合成

Abstract:

Objective Indirubin, a bi-indolic alkaloid derivative isolated from the traditional Chinese herbal medicine Indigo Naturalis, represents a potent therapeutic compound having broad-spectrum antibacterial, anti-inflammatory, and anti-tumor properties. Currently, it is clinically utilized primarily in combination therapy regimens for the treatment of chronic myeloid leukemia (CML), psoriasis, and related pathologies. This study investigates the potential of the safe Escherichia coli Nissle 1917 (EcN) as a chassis for constructing a green supply system for the active components of the traditional Chinese medicine indirubin. Method Based on the engineering modification of the natural endogenous plasmid of EcN, the product output efficiency of the indirubin biosynthesis pathway constructed using the flavin monooxygenase fmo and its mutants (fmoK223R and fmoK223R/D317S )) from Methylophaga sp. SK1 was systematically evaluated. Combined with metabolic engineering, key genes in the competitive branch of the tryptophan biosynthesis pathway were knocked out, including pheA, a key gene for phenylalanine biosynthesis, and tyrA, a key gene for tyrosine biosynthesis. Further optimization was achieved by inactivating the upstream genes of the tricarboxylic acid cycle, including pykA (pyruvate kinase) and ppc (phosphoenolpyruvate carboxylase). Finally, the product synthesis level was further improved by deleting the repressor protein gene trpR in the tryptophan pathway and strengthening the anti-feedback inhibition gene trpES40F in the tryptophan pathway. Result After 48 h of shaking culture in a 250 mL flask (50 mL culture), the indirubin titer reached (176.9 ± 4.5) mg/L, representing a 3.5-fold increase compared to the parent strain harboring only the wild-type fmo gene. The production in the 5 L bioreactor was (379.3 ± 12.3) mg/L. Conclusion Employing the endogenous cryptic plasmid of the probiotic EcN to express the heterologous flavin monooxygenase mutant gene fmoK223R, and integrating this with systematic metabolic engineering of endogenous tryptophan biosynthesis pathways, the production of indirubin reached over 300 mg/L, demonstrating the excellent potential of EcN as a cell factory for biosynthesis of active ingredients in traditional Chinese medicines.

Key words: Escherichia coli Nissle 1917, flavin monooxygenase bFMO, traditional Chinese medicine Indigo Naturalis, indirubin, biosynthesis