生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 143-152.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0690

• 未来食品工程专题 • 上一篇    

高产乳酰-N-三糖Ⅱ大肠杆菌菌株的构建

何听雨(), 逄雨, 张远洋, 孙雪(), 李玉, 路福平, 李庆刚()   

  1. 天津科技大学生物工程学院,天津 300457
  • 收稿日期:2025-06-30 出版日期:2025-11-26 发布日期:2025-12-09
  • 通讯作者: 李庆刚,博士,教授,研究方向 :应用微生物与酶工程;E-mail: liqinggang@tust.edu.cn
    孙雪,博士,助理研究员,研究方向 :应用微生物与酶工程;E-mail: sunxue@tust.edu.cn
  • 作者简介:何听雨,硕士研究生,研究方向 :应用微生物与酶工程;E-mail: hetingyu2023@163.com
  • 基金资助:
    国家重点研发计划项目(2024YFA0918303);国家自然科学基金面上项目(32470077);合成生物学海河实验室颠覆性创新(人才)类项目

Construction of a High-production Lacto -N-triose Ⅱ-producing Escherichia coli Strain

HE Ting-yu(), PANG Yu, ZHANG Yuan-yang, SUN Xue(), LI Yu, LU Fu-ping, LI Qing-gang()   

  1. College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457
  • Received:2025-06-30 Published:2025-11-26 Online:2025-12-09

摘要:

目的 利用微生物合成乳酰-N-三糖 Ⅱ(lacto-N-triose, LNT Ⅱ)是实现其工业化生产的可行方法,但目前由于异源酶的表达较差、途径关键酶及限速酶表达不平衡和前体物质合成不足等问题,LNT Ⅱ的产量仍然较低,本研究构建LNT Ⅱ高产菌株,提高LNT Ⅱ的合成能力。 方法 对比不同促溶蛋白标签对关键酶β-1,3-N-乙酰葡糖胺转移酶LgtA可溶性表达的影响,并精准调控LgtA和限速酶谷氨酰胺-果糖-6-磷酸氨基转移酶GlmS的表达强度,同时对不同来源的谷氨酰胺合成酶GlnA进行筛选,显著提升异源酶的可溶性表达,均衡关键途径酶的表达水平并强化前体供给,最后对LNT Ⅱ发酵培养基成分,包括甘油、IPTG、甜菜碱和乳清酸添加量进行优化。 结果 将MBP与LgtA融合后,LgtA的溶解度显著提高;通过RBS T7调节关键酶LgtA和限速酶GlmS的翻译强度、表达SGlnAE304A后有利于LNT Ⅱ的合成和菌株的生长;在甘油添加量为15 mL/L、IPTG添加量为0.1 mmol/L、甜菜碱添加量为3 g/L、乳清酸添加量3 g/L的培养条件下,LNT Ⅱ的产量由4.37 g/L提高至14.12 g/L。 结论 本研究对LNT Ⅱ生产菌株的代谢工程改造与发酵条件优化,显著提高了LNT Ⅱ的生产水平,并为在大肠杆菌中合成其他种类的HMOs提供了参考。

关键词: 乳酰-N-三糖 Ⅱ, 人乳寡糖, 大肠杆菌, 微生物合成, 促溶蛋白标签

Abstract:

Objective The synthesis of lacto-N-triose Ⅱ (LNT Ⅱ) by microorganisms is a feasible method for its industrial production. However, at present, due to issues such as poor expressions of heterologous enzymes, unbalanced expressions of key and rate-limiting enzymes, and insufficiency of precursors, the production of LNT Ⅱ is still relatively low. This study constructed LNT Ⅱ high-producing strains increasing the synthetic capacity of LNT Ⅱ. Method By comparing the effects of different solubility-promoting protein labels on the soluble expression of the key enzyme β-1, 3-N-acetylglucosaminotransferase (LgtA), regulating the expressions of LgtA and the rate-limiting enzyme glutamine-fructose-6-phosphate aminotransferase (GlmS) precisely, and selecting suitable glutamine synthase (GlnA) from different sources, the soluble expressions of heterologous enzymes were enhanced significantly, the expressions of key pathway enzymes were balanced, the supplies of precursors were strengthened, and the component of LNT Ⅱ fermentation medium such as glycerol, IPTG, betaine and orotic acid concentrations were optimized finally. Result The solubility of LgtA was significantly improved after fused with MBP. Then, by using RBS T7 to regulate the translation of the key enzyme LgtA and the rate-limiting enzyme GlmS and overexpressing SGlnAE304A, it was beneficial for the synthesis of LNT Ⅱ and the growth of the strain. Finally, the LNT Ⅱ production increased from 4.37 g/L to 14.12 g/L under the culture conditions of 15 mL/L glycerol addition, 0.1 mmol/L IPTG addition, 3 g/L betaine addition, and 3 g/L orotic acid addition. Conclusion This study combined the metabolic engineering and fermentation condition optimization, increasing the LNT Ⅱ production significantly. It provided a reference for the synthesis of other types of HMOs in Escherichia coli.

Key words: lacto-N-triose Ⅱ, human milk oligosaccharides, Escherichia coli, microbial synthesis, solubility-promoting protein tag