生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 51-66.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0863

• 综述与专论 • 上一篇    下一篇

人工智能在DNA设计中的研究进展

刘欢1,2(), 郭发旭3, 赵晓燕2, 黄龙雨2, 王健1, 周国民4,5,6(), 张建华1,2()   

  1. 1.中国农业科学院农业信息研究所,北京 100081
    2.三亚中国农业科学院国家南繁研究院,三亚 572024
    3.甘肃农业大学机电工程学院,兰州 730070
    4.农业农村部南京农业机械化研究所,南京 210014
    5.国家农业科学数据中心,北京 100081
    6.中国农业科学院西部农业;研究中心,昌吉 831100
  • 收稿日期:2025-08-09 出版日期:2026-01-26 发布日期:2026-02-04
  • 通讯作者: 张建华,男,博士,研究员,研究方向 :计算机视觉;E-mail: zhangjianhua@caas.cn
    周国民,男,博士,研究员,研究方向 :信息技术与数字农业;E-mail: zhouguomin@caas.cn
  • 作者简介:刘欢,男,硕士研究生,研究方向 :数据分析;E-mail: liuhuan01@139.com
  • 基金资助:
    国家重点研发计划(2022YFF0711805);国家重点研发计划(2022YFF0711801);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2409);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2410);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2312);三亚中国农业科学院国家南繁研究院南繁专项(ZDXM2311);中央级公益性科研院所基本科研业务费专项(JBYW-AII-2024-05);中央级公益性科研院所基本科研业务费专项(JBYW-AII-2023-06);中国农业科学院科技创新工程(CAAS-ASTIP-2024-AII);中国农业科学院科技创新工程(CAAS-ASTIP-2023-AII);三亚崖州湾科技城科技专项资助(SCKJ-JYRC-2023-45);海南省自然科学基金(325MS155)

Advances in Artificial Intelligence for DNA Design

LIU Huan1,2(), GUO Fa-xu3, ZHAO Xiao-yan2, HUANG Long-yu2, WANG Jian1, ZHOU Guo-min4,5,6(), ZHANG Jian-hua1,2()   

  1. 1.Agricultural Information Institute,Chinese Academy of Agricultural Sciences,Beijing 100081
    2.National Nanfan Research Institute,Chinese Academy of Agriculture Science,Sanya 572024
    3.College of Mechanical and Electrical Engineering,Gansu Agricultural University,Lanzhou 730070
    4.Nanjing Institute of Agricultural Mechanization,Ministry of Agriculture and Rural Affairs,Nanjing 210014
    5.National Agricultural Science Data Center,Beijing 100081
    6.Institute of Western Agriculture,Chinese Academy of Agricultural Sciences,Changji 831100
  • Received:2025-08-09 Published:2026-01-26 Online:2026-02-04

摘要:

DNA设计是根据特定功能需求定向构建与优化基因组功能元件,已成为合成生物学与精准育种等前沿领域的关键核心技术。传统设计方法受限于对复杂调控网络认知不足及序列搜索空间巨大等瓶颈,难以实现高效、精准的序列创新。近年来,人工智能技术,特别是深度生成模型与预测模型的融合应用,正深刻重塑DNA设计的理论基础与技术范式。该范式通过学习海量组学数据中蕴含的“调控语法”,能够在超长基因组序列背景下实现高分辨率的功能预测、多模态信息整合与条件可控的序列生成。本文系统综述了人工智能在DNA设计中的前沿进展,重点阐述了深度生成与预测模型在启动子、增强子等多层级调控元件设计、序列优化及作物育种等领域的关键技术路径与应用实例。通过构建“设计—预测—优化—验证”的智能化闭环,人工智能不仅显著提升了复杂功能元件的设计效率与准确性,更催生了性能超越天然元件的“超天然”序列。展望未来,随着人工智能与合成生物学、实验自动化等领域的深度融合,DNA设计有望实现从智能化设计到高通量实验验证的完整闭环,从而加速生命科学基础研究与现代农业育种等领域的创新突破。

关键词: 人工智能, DNA设计, 生成模型, 预测模型

Abstract:

DNA design, namely the targeted construction and optimization of genomic functional elements to meet specific performance requirements, has become a core enabling technology at the forefront of synthetic biology and precision breeding. Traditional design approaches are constrained by limited understanding of complex regulatory networks and the vastness of the sequence search space, making efficient and precise sequence innovation difficult. In recent years, artificial intelligence (AI), especially the integrated use of deep generative and predictive models, has been reshaping the theoretical foundations and technical paradigms of DNA design. By learning the "regulatory grammar" embedded in massive omics datasets, these methods enable high-resolution functional prediction, multimodal data integration, and condition-controlled sequence generation within ultra-long genomic contexts. This article systematically reviews cutting-edge advances in AI for DNA design, with an emphasis on key technical pathways and applications of deep generative and predictive models in the design of multi-level regulatory elements such as promoters and enhancers, sequence optimization, and crop breeding. By establishing an intelligent closed loop of “design–prediction–optimization–validation”, AI not only markedly improves the efficiency and accuracy of designing complex functional elements, but also gives rise to synthetic sequences that outperform their natural counterparts. Looking ahead, as AI further converges with synthetic biology and experimental automation, DNA design is poised to achieve a full pipeline from intelligent design to high-throughput experimental validation, thereby accelerating breakthroughs in basic life science research and modern agricultural breeding.

Key words: artificial intelligence, DNA design, generative model, predictive model