| [1] |
Eraslan G, Avsec Ž, Gagneur J, et al. Deep learning: new computational modelling techniques for genomics [J]. Nat Rev Genet, 2019, 20(7): 389-403.
|
| [2] |
Kelley DR, Reshef YA, Bileschi M, et al. Sequential regulatory activity prediction across chromosomes with convolutional neural networks [J]. Genome Res, 2018, 28(5): 739-750.
|
| [3] |
Agarwal V, Shendure J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks [J]. Cell Rep, 2020, 31(7): 107663.
|
| [4] |
Zhang PC, Wang HC, Xu HW, et al. Deep flanking sequence engineering for efficient promoter design using DeepSEED [J]. Nat Commun, 2023, 14: 6309.
|
| [5] |
Wu MR, Nissim L, Stupp D, et al. A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS) [J]. Nat Commun, 2019, 10: 2880.
|
| [6] |
Yu TC, Liu WL, Brinck MS, et al. Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems [J]. Nat Commun, 2021, 12: 325.
|
| [7] |
Ji YR, Zhou ZH, Liu H, et al. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome [J]. Bioinformatics, 2021, 37(15): 2112-2120.
|
| [8] |
Linder J, Bogard N, Rosenberg AB, et al. A generative neural network for maximizing fitness and diversity of synthetic DNA and protein sequences [J]. Cell Syst, 2020, 11(1): 49-62.e16.
|
| [9] |
Zhou ZH, Ji YR, Li WJ, et al. DNABERT-2: Efficient foundation model and benchmark for multi-species genomes [J]. arXiv.org. 2023. DOI: 10.48550/arxiv.2306.15006 .
|
| [10] |
Avsec Ž, Weilert M, Shrikumar A, et al. Base-resolution models of transcription-factor binding reveal soft motif syntax [J]. Nat Genet, 2021, 53(3): 354-366.
|
| [11] |
Wang Y, Wang HC, Wei L, et al. Synthetic promoter design in Escherichia coli based on a deep generative network [J]. Nucleic Acids Res, 2020, 48(12): 6403-6412.
|
| [12] |
Killoran N, Lee LJ, Delong A, et al. Generating and designing DNA with deep generative models [J]. arXiv.org. 2017. DOI: 10.48550/arxiv.1712.06148 .
|
| [13] |
Gupta A, Zou J. Feedback GAN for DNA optimizes protein functions [J]. Nat Mach Intell, 2019, 1(2): 105-111.
|
| [14] |
Wang XL, Xu KJ, Tan YM, et al. Deep learning-assisted design of novel promoters in Escherichia coli [J]. Adv Genet, 2023, 4(4): 2300184.
|
| [15] |
Alipanahi B, Delong A, Weirauch MT, et al. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning [J]. Nat Biotechnol, 2015, 33(8): 831-838.
|
| [16] |
Wang XL, Xu KJ, Huang ZS, et al. Accelerating promoter identification and design by deep learning [J]. Trends Biotechnol, 2025.
|
| [17] |
Barbadilla-Martínez L, Klaassen N, van Steensel B, et al. Predicting gene expression from DNA sequence using deep learning models [J]. Nat Rev Genet, 2025, 26(10): 666-680.
|
| [18] |
Quang D, Xie XH. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences [J]. Nucleic Acids Res, 2016, 44(11): e107.
|
| [19] |
Jores T, Tonnies J, Wrightsman T, et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters [J]. Nat Plants, 2021, 7(6): 842-855.
|
| [20] |
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model [J]. Nat Meth, 2015, 12(10): 931-934.
|
| [21] |
Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks [J]. Genome Res, 2016, 26(7): 990-999.
|
| [22] |
Li ZH, Zhang YY, Peng B, et al. A novel interpretable deep learning-based computational framework designed synthetic enhancers with broad cross-species activity [J]. Nucleic Acids Res, 2024, 52(21): 13447-13468.
|
| [23] |
Yin C, Castillo-Hair S, Byeon GW, et al. Iterative deep learning design of human enhancers exploits condensed sequence grammar to achieve cell-type specificity [J]. Cell Syst, 2025, 16(7): 101302.
|
| [24] |
Vaishnav ED, de Boer CG, Molinet J, et al. The evolution, evolvability and engineering of gene regulatory DNA [J]. Nature, 2022, 603(7901): 455-463.
|
| [25] |
Fu HG, Liang YB, Zhong XQ, et al. Codon optimization with deep learning to enhance protein expression [J]. Sci Rep, 2020, 10: 17617.
|
| [26] |
Yang G, Chen YJ, Guo QH, et al. Leveraging pre-trained AI models for robust promoter sequence design in synthetic biology [J]. Swwlxb, 2025, 11: 1.
|
| [27] |
Fallahpour A, Gureghian V, Filion GJ, et al. CodonTransformer: a multispecies codon optimizer using context-aware neural networks [J]. Nat Commun, 2025, 16: 3205.
|
| [28] |
Zrimec J, Fu XZ, Muhammad AS, et al. Controlling gene expression with deep generative design of regulatory DNA [J]. Nat Commun, 2022, 13: 5099.
|
| [29] |
de Almeida BP, Schaub C, Pagani M, et al. Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo. [J]. Nature, 2024, 626(7997): 207-211.
|
| [30] |
Avdeyev P, Shi CL, Tan YH, et al. Dirichlet diffusion score model for biological sequence generation [J]. arXiv.org. 2023. DOI: 10.48550/arxiv.2305.10699 .
|
| [31] |
de Almeida BP, Reiter F, Pagani M, et al. DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers [J]. Nat Genet, 2022, 54(5): 613-624.
|
| [32] |
Avsec Ž, Agarwal V, Visentin D, et al. Effective gene expression prediction from sequence by integrating long-range interactions [J]. Nat Meth, 2021, 18(10): 1196-1203.
|
| [33] |
Yang Y, Lee JH, Poindexter MR, et al. Rational design and testing of abiotic stress-inducible synthetic promoters from poplar cis-regulatory elements [J]. Plant Biotechnol J, 2021, 19(7): 1354-1369.
|
| [34] |
Jain R, Jain A, Mauro E, et al. ICOR: improving codon optimization with recurrent neural networks [J]. BMC Bioinform, 2023, 24(1): 132.
|
| [35] |
Lei X, Wang X, Chen GL, et al. Combining diffusion and transformer models for enhanced promoter synthesis and strength prediction in deep learning [J]. mSystems, 2025, 10(4)
|
| [36] |
Kelley DR. Cross-species regulatory sequence activity prediction [J]. PLoS Comput Biol, 2020, 16(7): e1008050.
|
| [37] |
Li JQ, Zhang PC, Xi X, et al. Modeling and designing enhancers by introducing and harnessing transcription factor binding units [J]. Nat Commun, 2025, 16: 1469.
|
| [38] |
Gasperini M, Tome JM, Shendure J. Towards a comprehensive catalogue of validated and target-linked human enhancers [J]. Nat Rev Genet, 2020, 21(5): 292-310.
|
| [39] |
Zhou J, Theesfeld CL, Yao K, et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk [J]. Nat Genet, 2018, 50(8): 1171-1179.
|
| [40] |
Friedman RZ, Ramu A, Lichtarge S, et al. Active learning of enhancers and silencers in the developing neural retina [J]. Cell Syst, 2025, 16(1): 101163.
|
| [41] |
Karbalayghareh A, Sahin M, Leslie CS. Chromatin interaction-aware gene regulatory modeling with graph attention networks [J]. Genome Res, 2022, 32(7): 1290-1304.
|
| [42] |
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning [J]. Cell, 2019, 176(3): 535-548.e24.
|
| [43] |
Sample PJ, Wang B, Reid DW, et al. Human 5' UTR design and variant effect prediction from a massively parallel translation assay [J]. Nat Biotechnol, 2019, 37(7): 803-809.
|
| [44] |
Bogard N, Linder J, Rosenberg AB, et al. A deep neural network for predicting and engineering alternative polyadenylation [J]. Cell, 2019, 178(1): 91-106.e23.
|
| [45] |
Lee NK, Tang ZQ, Toneyan S, et al. EvoAug: improving generalization and interpretability of genomic deep neural networks with evolution-inspired data augmentations [J]. Genome Biol, 2023, 24(1): 105.
|
| [46] |
Cherednichenko O, Poptsova M. Data augmentation with generative models improves detection of Non-B DNA structures [J]. Comput Biol Med, 2025, 184: 109440.
|
| [47] |
Davidi D, et al. Regulatory DNA sequence design with reinforcement learning [DB/OL]. arXiv preprint: 2503.07981.
|
| [48] |
Jaganathan K, Ersaro N, Novakovsky G, et al. Predicting expression-altering promoter mutations with deep learning [J]. Science, 2025, 389(6760): eads7373.
|
| [49] |
Dalla-Torre H, Gonzalez L, Mendoza-Revilla J, et al. Nucleotide Transformer: building and evaluating robust foundation models for human genomics [J]. Nat Meth, 2025, 22(2): 287-297.
|
| [50] |
张冀东, 王志晗, 刘博, 等. 深度学习在生物序列分析领域的应用进展 [J]. 北京工业大学学报, 2022, 48(8): 878-887.
|
|
Zhang JD, Wang ZH, Liu B, et al. Progress in the applications of deep learning in biological sequence analysis [J]. J Beijing Univ Technol, 2022, 48(8): 878-887.
|