[1] Fishlock TW, Oral A, Egdell RG, et al. Manipulation of atoms across a surface at room temperature[J]. Nature, 2000, 404(6779): 743-745. [2] Pascal A, Franklin AH, Eric W, et al. Halogen bonds in biological molecules[J]. Proc Natl Acad Sci USA, 2004, 101(48):16789- 16794. [3] 张阳德. 纳米生物技术学[M]. 北京:科学出版社, 2005:62. [4] Chilkoti A, Dreher MR, Meyer DE. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery[J]. Adv Drug Deliv Rev, 2002, 54(8):1093-1111. [5] Maillard S, Ameller T, Gauduchon J, et al. Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma[J]. J Steroid Biochem Mol Biol, 2005, 94(1-3):111-121. [6] Yin WK, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials, 2005, 26(15):2713-2722. [7] Mari T, Masanori U, Noritada K, et al. Nanospheres for DNA separation chips[J]. Nat Biotech, 2004, 22(3):337-340. [8] Gao XH, Cui YY, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotech, 2004, 22(8):969-976. [9] James JS, Adam DL, Viswanadham G, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes[J]. Nat Biotech, 2002, 22(7): 883-887. [10] Medintz IL, Konnert JH, Clapp AR, et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly[J]. Proc Natl Acad Sci USA, 2004, 101(26):9612-9617. [11] Zhao XJ, Hilliard LR, Mechery SJ, et al. From the cover:A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles[J].Proc Natl Acad Sci USA, 2004, 101(42): 15027-15032. [12] 肖苏尧, 刘选明, 童春义, 等. 多聚赖氨酸淀粉纳米颗粒基因 载体的研制及应用[J]. 中国科学B 辑, 2004, 34(6):473- 477. [13] Indrajit R, Tymish YO, Dhruba JB, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers:A nonviral, nanomedicine approach for gene delivery[J]. Proc Natl Acad Sci USA, 2005, 102(2):279-284. [14] Klabunde KJ, Stark J, Koper O, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry[J]. J Phys Chem, 1996, 100(30):12142-12153. [15] Golabi SM, Nozad A. Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly (o-phenylenediamine)film[J]. J Joumal of Electroanalytical Chemistry, 2002, 521(1-2):161-167. [16] Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271:933-937. [17] Jiang P, Liu ZF, Cai SM. In situ CdS nanocluster formation on scanning tunneling microscopy tips for reliable single-electron tunneling at room temperature[J]. Applied Physics Letters, 1999, 75(19):3023-3025. [18] Luo D, Saltzman WM. Synethetic DNA delivery systems[J].Nat Biotech, 2000, 18:33-37. [19] Lehrman S. Virus treatment questioned after gene therapy death[J]. Nature, 1999, 401(6753):517- 518. [20] Van Craynest N, Santaella C, Boussif O, Vierling P. Polycationic telomers and cotelomers for gene transfer:synthesis and evaluation of their an vitro transfection efficiency[J]. Bioconjug Chem, 2002, 13(1):59-75. [21] Junghans M, Kreuter J, Zimmer A. Antisense delivery using protamine-oligonucleotide particles[J]. Nucleic Acids Res, 2000, 28(10):e45. [22] Jeong JH, Park TG. Poly(L-lysine)-g-poly(D, L-lactic-co-glycolic acid)micelles for low cytotoxic biodegradable gene delivery carriers[J]. J Control Release, 2002, 82(1):159-166. [23] Ogirs M, Wagner E. Targeting tumors with non-viral gene delivery systems[J]. Drug Discovery Today, 2002, 7(8):479-485. [24] Chan CK, Senden T, Jans DA. Supramolecular structure and nuclear targeting efficieney determine the enhancement of transfection by 2013年第2期65 卢艳敏:纳米基因载体研究进展 modified polylysines[J]. Gene Therapy, 2000, 7:1690-1697. [25] Kneuer C, Sameti M, Haltner EG, et al. Silica nanoParticles modified with aminosilanes as carriers for plasmid DNA[J]. International Journal of Pharmaceutics, 2000, 196(2):257-261. [26] Fenske DB, Maclachlan I, Cullis PR, et al. Long-circulating vecots for the systemic delivery of genes[J].Curr Opin Mol Ther, 2000, 3(2):153-158. [27] Schatzlein AG. Targeting of synthetic gene delivery systems[J]. J Biomed Biotechnol, 2003(2):149-158. [28] Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression[J].Mol Ther, 2006, 14(5):613-626. [29] Pack DW, Hoffman AS, Pun S, et al. Design and development of polymers for gene delivery[J]. Nat Rev Drug Discov, 2005, 4(7): 581-593. [30] Truong-Le VL, August JT, Leong KW. Controlled gene delivery by DNA-gelatin nanospheres[J]. Hum GeneTher, 1998, 9:1709- 1717. [31] Ma H, Diamond SL. Nonviral gene therapy and its deliverysystems[J]. Curr Pharm Biotechn, 2001, 2(1):1-17. [32] Moghimi SM, Hunter AC, Murray JC. Long-circulating and targetspecific nanoparticles:theory to practices[J]. Pharmacol Rev, 2001, 53(3):283-318. [33] Ciftci K, Levy RJ. Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts[J]. Inter J Pharm, 2001, 218(1-2):81-92. [34] Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides[J]. Advanced Drug Delivery Reviews, 2001, 47(1)99-112. [35] Braun CS, Vetro JA, Tomalia DA, et al. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles[J]. J Pharm Sci, 2005, 94(2):423-436. [36] El-Sayed M, Ginski M, Rhodes C, et al. Transepithelial transport of poly(amidoamine)dendrimers across Caco-2 cell monolayers[J]. J Control Release, 2002, 81(3):355-365. [37] Kihara F, Arima H, Tsutsumi T, et al. Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with alpha-cyclodextrin[J]. Bioconjug Chem, 2002, 13(6):1211-1219. [38] Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)- conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery[J]. Macromolecules, 2002, 35(9):3456-3462. [39] Liu Y, Jia S, Wu Q, et al. Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization[J]. Catalysis Communications, 2011, 12(8): 717-720. [40] Waite C, Sparks S, Uhrich K, et al. Acetylation of PAMAM dendrimers for cellular delivery of siRNA[J].BMC Biotechnology, 2009, 9:38. [41] Patil ML, Zhang M, Taratula O, et al. Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery:effect of the degree of quaternization and cancer targeting[J]. Biomacromolecules, 2009, 10(2):258-266. [42] Zhang X, Oulad-Abdelghani M, Zelkin AN, et al. Poly(l-lysine) nanostructured particles for gene delivery and hormone stimulation[J]. Biomaterials, 2010, 31(7):1699-1706. [43] Cho KC, Kim SH, Jeong JH, et al. Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine) conjugate[J]. Macromol Biosci, 2005, 5(6):512-519. [44] Deng R, Yue Y, Jin F, et al. Revisit the complexation of PEI and DNA-How to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure?[J]. Journal of Controlled Release, 2009, 140(1):40-46. [45] Tagawa T, Manvell M, Brown N, et al. Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide mu and plasmid DNA[J]. Gene Ther, 2002, 9(9):564-576. [46] Verkman AS, Sonawane ND, Szoka FC. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes[J]. J Biol Chem, 2003, 278(45):44826-44831. [47] Elfinger M, Geiger J, Hasenpusch G, et al. Targeting of the β2-adrenoceptor increases nonviral gene delivery to pulmonary epithelial cells in vitro and lungs in vivo[J]. Journal of Controlled Release, 2009, 135:234-241. [48] Jeong JH, Lee M, Kim WJ, et al. Anti-GAD antibody targeted nonviral gene delivery to islet beta cells[J]. J Control Release, 2005, 107(3):562-570. [49] Kunath K, Merdan T, Hegener O, et al. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer[J]. J Gene Med, 2003, 5(7):588-599. 生物技术通报 Biotechnology Bulletin 2013年第2期66 [50] Elfinger M, Maucksch C, Rudolph C. Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells[J]. Biomaterials, 2007, 28(23):3448-3455. [51] Weiss SI, Sieverling N, Niclasen M, et al. Uronic acids functionalized polyethy- leneimine(PEI)-polyethyleneglycol(PEG)-graftcopolymers as novel synthetic gene carriers[J]. Biomaterials, 2006, 27(10):2302-2312. [52] Chul Cho K, Hoon Jeong J, Jung Chung H, et al. Folate receptormediated intracellular delivery of recombinant caspase-3 for inducing apoptosis[J]. J Control Release, 2005, 108(1):121-131. [53] Liu WG, Yao KD. Chitosan and its derivatives-a promising nonviral vector forgene transfection[J]. J Control Release, 2002, 83 (1):1-11. [54] Mansouri S, Lavigne P, Corsi K, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy:strategies to improve transfection efficacy[J]. Eur J Pharm Biopharm, 2004, 57(1):1-8. [55] Qin F, Zhou Y, Shi J, et al. A DNA transporter based on mesoporous sili-ca nanospheres mediated with polycation poly(allylaminehydrochloride) coating on mesopore surface[J]. Biomed Mater Res, 2009, 90A:333. [56] Mahmoudi M, Simchi A, Imani M, et al. Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery[J]. J Phys Chem, 2009, 113(19):8124-8131. [57] Qureshi HY, Ahmad R, Zafarullah M. High-efficiency transfection of nucleic acids by the modified calcium phosphate precipitation method in chondrocytes[J]. Anal Biochem, 2008, 382(2): 138-140. [58] Sandhu KK, McIntosh CM, Simard JM, et al. Gold nanoparticles mediated transfection of mammalian cells[J]. Bioconjugate Chem, 2002, 13(1):3-6. [59] Saccardo P, Villaverde A, González-Montalbán N. Peptide-mediated DNA condensation for non-viral gene therapy[J]. Biotechnology Advances, 2009, 27(4):432-438. (责任编辑 狄艳红) |