生物技术通报 ›› 2013, Vol. 0 ›› Issue (7): 12-19.
刘瑜,李丕武
收稿日期:
2013-01-04
修回日期:
2013-07-19
出版日期:
2013-07-19
发布日期:
2013-09-02
作者简介:
刘瑜,男,硕士研究生,研究方向:微生物酶技术;E-mail:liu_yu1988@163.com
基金资助:
Liu Yu, Li Piwu
Received:
2013-01-04
Revised:
2013-07-19
Published:
2013-07-19
Online:
2013-09-02
摘要: 葡萄糖氧化酶能够催化葡萄糖氧化生成葡萄糖酸-δ-内酯,具有广泛的应用领域。黑曲霉是传统的产葡萄糖氧化酶工业菌种,经过几十年的工业应用,产酶水平已经达到极限。目前应用于表达葡萄糖氧化酶的表达系统主要有黑曲霉、酿酒酵母和巴斯德毕赤酵母。近些年来蛋白质定向进化手段开始应用于葡萄糖氧化酶的分子改造,有望使黑曲霉葡萄糖氧化酶的工业化产量得到进一步的提高。介绍葡萄糖氧化酶高产基因工程菌研究进展。
刘瑜,李丕武. 黑曲霉葡萄糖氧化酶高产基因工程菌研究进展[J]. 生物技术通报, 2013, 0(7): 12-19.
Liu Yu, Li Piwu. Review on High-level Aspergillus niger Glucose Oxidase Production Engineering Strains[J]. Biotechnology Bulletin, 2013, 0(7): 12-19.
[1] Müller D. Oxidation von glukose mit extrakten aus Aspegillus niger[J]. Biochemische Zeitschrift, 1928, 199:136-170. [2] Wohlfahrt G, Trivi? S, Zeremski J, et al. The chemical mechanism of action of glucose oxidase from Aspergillus niger[J]. Mol Cell Biochem, 2004, 260(1):69-83. [3] Witteveen FB, Van de Vondervoort PJ, Van den Broeck HC, et al. Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger[J]. Curr Genet, 1993, 24(5):408-416. [4] Witt S, Wohlfahrt G, Schomburg D, et al. Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of beta-D-glucose[J]. Biochem J, 2000, 347(Pt 2):553-559. [5] Chen L, Zhang XE, Xie W, et al. Genetic modification of glucose oxidase for improving performance of an amperometric glucose biosensor[J]. Biosens Bioelectron, 2002, 17(10):851-857. [6] Bonet A, Rosell CM, Caballero PA, et al. Glucose oxidase effect on dough rheology and bread quality:A study from macroscopic to molecular level[J]. Food Chem, 2006, 99(2):408-415. [7] Tomotani EJ, Vitolo M. Immobilized glucose oxidase as a catalyst to the conversion of glucose into gluconic acid using a membrane reactor[J]. Enzyme Microb Tech, 2007, 40(5):1020-1025. [8] Hao Yu E, Scott K. Enzymatic biofuel cells—fabrication of enzyme electrodes[J]. Energies, 2010, 3(1):23-42. [9] Bankar SB, Bule MV, Singhal RS, et al. Glucose oxidase—an overview[J]. Biotechnol Adv, 2009, 27(4):489-501. [10] Kiess M, Hecht HJ, Kalisz HM. Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline(GMC)oxidoreductases[J]. Eur J Biochem, 1998, 252(1):90-99. [11] Petruccioli M, Piccioni P, Federici F. Glucose oxidase overproduc-tion by the mutant strain M-80.10 of Penicillium variabile in a benchtop fermenter[J]. Enzyme Microb Tech, 1997, 21(6):458-462. [12] Elnaghy MA, Megalla SE. Gluconic acid production by Penicillium puberulum[J]. Folia Microbiol, 1975, 20(6):504-508. [13] Tsuge H, Natsuaki O, Ohashi K. Purification, properties, and molecular features of glucose oxidase from Aspergillus niger[J]. J Biochem, 1975, 78(4):835-843. [14] Solomon B, Levin Y. Flavin-protein interaction in bound glucose oxidase[J]. Appl Biochem Biotech, 1976, 1(2):159-171. [15] Swoboda BE, Massey V. Purification and properties of the glucose oxidase from Aspergillus niger[J]. J Biol Chem, 1965, 240:2209-2215. [16] Nakamura S, Fujiki S. Comparative studies on the glucose oxidases of Aspergillus niger and Penicillium amagasakiense[J]. J Biochem, 1968, 63(1):51-58. [17] Kalisz HM, Hecht HJ, Schomburg D, et al. Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger.[J]. Biochim Biophys Acta, 1991, 1080(2):138-142. [18] Kriechbaum M, Heilmann HJ, Wientjes FJ, et al. Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3[J]. FEBS Lett, 1989, 255(1):63-66. [19] Hecht HJ, Kalisz HM, Hendle J, et al. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 ? resolution[J]. J Mol BioL, 1993, 229(1):153-172. [20] Wohlfahrt G, Witt S, Hendle J, et al. 1.8 and 1.9 ? resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes[J]. Acta Crystallogr D, 1999, 55(5):969-977. [21] Kommoju PR, Chen ZW, Bruckner RC, et al. Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate[J]. Biochemistry, 2011, 50(24):5521-5534. [22] Liu J, Weng L, Zhang Q, et al. Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology[J]. World J Microb Biot, 2003, 19(3):317-323. [23] Mirón J, Vazquez J, Gonzalez M, et al. Joint effect of nitrogen and phosphorous on glucose oxidase production by Aspergillus niger:Discussion of an experimental design with a risk of co-linearity[J]. Biochem Eng J, 2008, 40(1):54-63. [24] Gera N, Uppaluri RVS, Sen S. Growth kinetics and production of glucose oxidase using Aspergillus niger NRRL 326[J]. Chem Biochem Eng Q, 2008, 22(3):315-320. [25] Bankar SB, Bule MV, Singhal RS, et al. Optimization of Aspergillus niger fermentation for the production of glucose oxidase[J]. Food Bioprocess Tech, 2009, 2(4):344-352. [26] Khattab AA, Bazaraa WA. Screening, mutagenesis and protoplast fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase production[J]. J Ind Microbiol Biot, 2005, 32(7):289-294. [27] Clarke KG, Johnstone-Robertson M, Price B, et al. Location of glucose oxidase during production by Aspergillus niger[J]. Appl Microbiol Biotechnol, 2006, 70(1):72-77. [28] Sharma R, Katoch M, Srivastava PS, et al. Approaches for refining heterologous protein production in filamentous fungi[J]. World J Microb Biot, 2009, 25(12):2083-2094. [29] Whittington H, Kerry-Williams S, et al. Expression of the Aspergillus niger glucose oxidase gene in A. niger, A. nidulans and Saccharom-yces cerevisiae[J]. Curr Genet, 1990, 18(6):531-536. [30] Sharif F, Gürdal Alaeddinoglu N. Expression and overproduction of glucose oxidase in Aspergillus niger[J]. Appl Microbiol Biotechnol, 1992, 38(1):115-116. [31] Hellmuth K, Pluschkell S, Jung J, et al. Optimization of glucose oxidase production by Aspergillus niger using genetic-and process-engineering techniques[J]. Appl Microbiol Biotechnol, 1995, 43(6):978-984. [32] El-Enshasy H, Hellmuth K, Rinas U. Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger[J]. Appl Biochem Biotech, 1999, 81(1):1-12. [33] El-Enshasy H, Hellmuth K, Rinas U. GpdA-promoter-controlled production of glucose oxidase by recombinant Aspergillus niger using non-glucose carbon sources[J]. Appl Biochem Biotech, 2001, 90(1):57-66. [34] Frederick KR, Tung J, Emerick RS, et al. Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme[J]. J Biol Chem, 1990, 265(7):3793-3802. [35] De Baetselier A, Vasavada A, Dohet P, et al. Fermentation of a yeast producing A. niger glucose oxidase:scale-up, purification and characterization of the recombinant enzyme[J]. Nat Biotechnol, 1991, 9(6):559-561. [36] Park EH, Shin YM, et al. Expression of glucose oxidase by using recombinant yeast[J]. J Biotechnol, 2000, 81(1):35-44. [37] Kim MY, Chung HJ, Hong SY, et al. Characterization of a novel allele of glucose oxidase from a Korean wild type strain of Aspergillus niger[J]. Mol Cells, 2001, 11(3):281-286. [38] Ko J. Secretory expression and purification of Aspergillus niger glucose oxidase in Saccharomyces cerevisiae mutant deficient in PMR1 gene[J]. Protein Expres Purif, 2002, 25(3):488-493. [39] Malherbe DF, du Toit M, Cordero Otero RR, et al. Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production[J]. Appl Microbiol Biotechnol, 2003, 61(5-6):502-511. [40] Valdivieso-Ugarte M, Ronchel C, Ba?uelos O, et al. Expression of an Aspergillus niger glucose oxidase in Saccharomyces cerevisiae and its use to optimize fructo-oligosaccharides synthesis[J]. Biotechnol Progr, 2006, 22(4):1096-1101. [41] Kapat A, Jung J. Improvement of extracellular recombinant glucose oxidase production in fed-batch culture of Saccharomyces cerevisiae:Effect of different feeding strategies[J]. Biotechnol Lett, 1998, 20(3):319-323. [42] Kapat A, Jung JK, Park YH. Enhancement of glucose oxidase production in batch cultivation of recombinant Saccharomyces cerevisiae:optimization of oxygen transfer condition[J]. J Appl Microbiol, 2001, 90(2):216-222. [43] Kapat A, Jung JK, Park YH. Effect of continuous feeding of galactose on the production of recombinant glucose oxidase using Saccharomyces cerevisiae[J]. Bioprocess Eng, 2000, 23(1):37-40. [44] Kapat A, Jung J. Enhancement of extracellular glucose oxidase production in pH-stat feed-back controlled fed-batch culture of recombinant Saccharomyces cerevisiae[J]. Biotechnol Lett, 1998, 20(7):683-686. [45] De Baetselier A, Dohet P, et al. A new production method for glucose oxidase[J]. J Biotechnol, 1992, 24(2):141-148. [46] 郭瑶. Aspergillus niger Z-25葡萄糖氧化酶基因在毕赤酵母中的表达[D]. 南京:南京农业大学, 2010. [47] Guo Y, Lu F, Zhao H, et al. Cloning and heterologous expression of glucose oxidase gene from Aspergillus niger Z-25 in Pichia pastoris[J]. Appl Biochem Biotech, 2010, 162(2):498-509. [48] Cregg JM. Pichia Protocols[M].2nd ed. Totowa, NJ:Humana Press, 2007:1-10. [49] 周亚凤, 张先恩, 刘虹, 等. 黑曲霉葡萄糖氧化酶基因的克隆及其在酵母中的高效表达[J]. 生物工程学报, 2001, 17(4):400-405. [50] 陈立群. 工程葡萄糖氧化酶的构建及其酶电极性能研究[D]. 武汉:中国科学院武汉病毒研究所, 2001. [51] 黄亮. 黑曲霉A9葡萄糖氧化酶基因克隆及其在毕赤酵母中的表达[D]. 保定:河北农业大学, 2007. [52] Yamaguchi M, Tahara Y, Nakano A, et al. Secretory and continuous expression of Aspergillus niger glucose oxidase gene in Pichia pastoris[J]. Protein Expres Purif, 2007, 55(2):273-278. [53] 安玉麟, 孙瑞芬, 张鹤龄, 等. 黑曲霉葡萄糖氧化酶基因的原核表达及其蛋白产物的Western-blot分析[J]. 华北农学报, 2009, 24(4):84-87. [54] Hodgkins M, Mead D, Ballance DJ, et al. Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations[J]. Yeast, 1993, 9(6):625-635. [55] 母敬郁, 王峤, 杨纯中, 等. 瑞氏木霉表达黑曲霉葡萄糖氧化酶[J]. 生物工程学报, 2006, 22(1):82-86. [56] Rocha SN, Abrah?o-Neto J, Cerdán ME, et al. Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus[J]. Microb Cell Fact, 2010, 9(1):4. [57] Dowdells C, Jones RL, Mattey M, et al. Gluconic acid production by Aspergillus terreus[J]. Lett Appl Microbiol, 2010, 51(3):252-257. [58] Tracewell CA, Arnold FH. Directed enzyme evolution:climbing fitness peaks one amino acid at a time[J]. Curr Opin Chem Biol, 2009, 13(1):3-9. [59] Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffli-ng[J]. Nature, 1994, 370(6488):389-391. [60] Cadwell RC, Joyce GF. Randomization of genes by PCR mutagenesis[J]. Genome Res, 1992, 2(1):28-33. [61] Zhao H, Giver L, Shao Z, et al. Molecular evolution by staggered extension process(StEP)in vitro recombination[J]. Nat Biote-chnol, 1998, 16(3):258-261. [62] 刘丹. 葡萄糖氧化酶的体外定向进化[D]. 武汉:中国科学院武汉病毒研究所, 2007. [63] Prodanovic R, Ostafe R, Scacioc A, et al. Ultrahigh-throughput screening system for directed glucose oxidase evolution in yeast cells[J]. Comb Chem High T Scr, 2011, 14(1):55-60. [64] Yu EH, Prodanovic R, Güven G, et al. Electrochemical oxidation of glucose using mutant glucose oxidase from directed protein evolution for biosensor and biofuel cell applications[J]. Appl Biochem Biotech, 2011, 165(7-8):1448-1457. [65] Holland JT, Harper JC, Dolan PL, et al. Rational redesign of glucose oxidase for improved catalytic function and stability[J]. PloS one, 2012, 7(6):e37924. [66] Wei W, McCusker JH, et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789[J]. Proc Natl Acad Sci USA, 2007, 104(31):12825-12830. [67] Machida M, Asai K, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438(7071):1157-1161. [68] Pel HJ, De Winde JH, Archer DB, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J]. Nat Biotechnol, 2007, 25(2):221-231. [69] De Schutter K, Lin YC, Tiels P, et al. Genome sequence of the recombinant protein production host Pichia pastoris[J]. Nat Biotechnol, 2009, 27(6):561-566. [70] Lopes TS, Klootwijk J, et al. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae:a new vector for high-level expression[J]. Gene, 1989, 79(2):199-206. [71] Cregg JM, Tolstorukov I, Kusari A, et al. Expression in the yeast Pichia pastoris[M]// Methods in Enzymology. 2nd ed. Elsevier Inc., 2009, 463:169-189. [72] Daly R, Hearn MTW. Expression of heterologous proteins in Pichia pastoris:a useful experimental tool in protein engineering and production[J]. J Mol Recognit, 2005, 18(2):119-138. |
[1] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[2] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[3] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[4] | 李丹, 杜梦潭, 修明霞, 刘兴健, 张志芳, 李轶女. 羊α干扰素在家蚕中的表达及抗小反刍兽疫病毒活性测定[J]. 生物技术通报, 2022, 38(1): 187-193. |
[5] | 廖兆民, 蔡俊, 林建国, 杜馨, 王常高. 黑曲霉葡萄糖氧化酶基因在毕赤酵母中的表达及产酶条件的优化[J]. 生物技术通报, 2021, 37(6): 97-107. |
[6] | 李红叶, 陈立佼, 刘明丽, 郭天杰, 王道平, 潘映红, 赵明. 黑曲霉单宁酶基因Tan2克隆与表达[J]. 生物技术通报, 2021, 37(3): 44-52. |
[7] | 孟晓建, 于建东, 郑小梅, 郑平, 李志敏, 孙际宾, 叶勤. 小分子代谢物对黑曲霉己糖激酶和丙酮酸激酶的酶活调控[J]. 生物技术通报, 2021, 37(12): 180-190. |
[8] | 张春晨, 胡双艳, 阮海华. 人源溶菌酶在大肠杆菌中的表达与复性研究[J]. 生物技术通报, 2020, 36(3): 153-161. |
[9] | 余姝侨, 官昭瑛, 陈红. 利用大肠埃希氏菌光控基因表达系统降解多菌灵农残[J]. 生物技术通报, 2019, 35(2): 218-224. |
[10] | 胡积祥, 曹雅倩, 朱秀梅, 余超, 田芳, 杨凤环, 陈华民, 何晨阳. 基于瞬时表达系统的水稻miRNA靶基因快速验证系统的建立[J]. 生物技术通报, 2019, 35(10): 57-63. |
[11] | 刘辉, 邓治, 杨洪, 代龙军, 李德军. 橡胶树HbMC2在酵母中的表达和抗逆性分析[J]. 生物技术通报, 2018, 34(9): 202-208. |
[12] | 高庆华, 董聪, 王玥, 胡美荣, 王庆庆, 王云鹏, 罗同阳, 刘蕾. 共表达分子伴侣PDI和Ero1对葡萄糖氧化酶在毕赤酵母中表达的影响[J]. 生物技术通报, 2018, 34(7): 174-179. |
[13] | 陈浩宇, 徐瑞涛, 程志翔, 高强, 张健. H2O2对黑曲霉氧化胁迫机理的研究[J]. 生物技术通报, 2018, 34(4): 201-207. |
[14] | 陈坤, 袁飞燕, 柴昊男, 刘焕, 王兴吉, 张会图, 路福平. 一种高效表达碱性蛋白酶的新型启动子的筛选及研究[J]. 生物技术通报, 2018, 34(1): 208-214. |
[15] | 刘蓉蓉. 转基因植物生产疫苗和药物的研发进展[J]. 生物技术通报, 2017, 33(9): 17-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||