生物技术通报 ›› 2014, Vol. 0 ›› Issue (3): 22-29.
韩国灿1, 姜少杰2, 邹飞雁2
收稿日期:
2013-07-08
出版日期:
2014-03-29
发布日期:
2014-03-31
作者简介:
韩国灿,男,研究方向:医学影像与肿瘤;E-mail:fluid_han@sina.com
基金资助:
Han Guocan1, Jiang Shaojie2, Zou Feiyan2
Received:
2013-07-08
Published:
2014-03-29
Online:
2014-03-31
摘要: 酪蛋白激酶Ⅰα(Casein kinase 1α,CK1α)广泛分布于各类真核生物中,是CK1家族的7个成员(CK1α、β、γ1、γ2、γ3、δ和ε)之一,序列结构高度保守。在哺乳动物中,CK1α参与多种细胞生理过程,包括膜转运,细胞周期,染色体分离,细胞凋亡和细胞分化等。此外,CK1α还参与Wnt/β-Cat,Hh及NF-κB等信号通路。将CK1α在各类信号通路的具体功能作一综述,为进一步研究其在信号通路中的地位提供参考。
韩国灿, 姜少杰, 邹飞雁. 酪蛋白激酶Iα与细胞信号通路[J]. 生物技术通报, 2014, 0(3): 22-29.
Han Guocan, Jiang Shaojie, Zou Feiyan. Casein Kinase 1α in Cell Signalling[J]. Biotechnology Bulletin, 2014, 0(3): 22-29.
[1] Rowles J, Slaughter C, Moomaw C, et al. Purification of casein kinase 1 and isolation of cDNAs encoding multiple casein kinase I-like enzymes[J]. Biochemistry, 1991, 88:9548-9552. [2] Bennett GS, Laskowska D, DiLullo C. Lithium inhibits the phospho-rylation of newly synthesized neurofilament protein, NF-M, in cultu-red chick sensory neurons[J]. J Neurochem, 1991, 57:120-129. [3] Knippschild U, Wolff S, Giamas G, et al. The role of the casein kin-ase 1(CK1)family in different signaling pathways linked to cancer development[J]. Onkologie, 2005, 28:508-514. [4] Knippschild U, Gocht A, Wolff S, et al. The casein kinase 1 family:participation in multiple cellular processes in eukaryotes[J]. Cellular Signalling, 2005, 17:675-689. [5] Dubois T, Howell S, Zemlickova E, et al. Identification of casein kinase 1α interacting protein partners[J]. FEBS Lett, 2002, 517:167-171. [6] Burzio V, Antonelli M, Allende CC, et al. Biochemical and cellular characteristics of the four splice variants of protein kinase CK1α from zebrafish(Danio rerio)[J]. J Cell Biochem, 2002, 86:805-814. [7] Green CL, Bennett GS. Identification of four alternatively spliced isoforms of chicken casein kinase 1 alpha that are all expressed in diverse cell types[J]. Gene, 1998, 216:189-195. [8] Zhang J, Gross SD, Schroeder MD, et al. Casein kinase 1α and αL:Alternative splicing-generated kinases exhibit different catalytic properties[J]. Biochemistry, 1996, 35:16319-16327. [9] Tapia C, Featherstone T, Gomez C, et al. Cloning and chromosomal localization of the gene coding for human protein kinase CK1[J]. FEBS Lett, 1994, 349:307-312. [10] Yong TJ, Gan YY, Toh BH, et al. Human CK1αL and CK1αS are econded by both 2. 4 and 4. 2 kb transcripts, the longer containing multiple RNA-destabilising elements[J]. Biochem Biophys Acta, 2000, 1492:425-433. [11] Fu Z, Chakraborti T, Morse S, et al. Four casein kinase 1 isoforms are differentially partitioned between nucleus and cytoplasm[J]. Exp Cell Res, 2001, 269:275-286. [12] Bedri S, Cizek SM, Rastarhuyeva I, et al. Regulation of protein kinase CK1αLS by dephosphorylation in response to hydrogen peroxide[J]. Arch Biochem Biophys, 2007, 466(2):242-249. [13] Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells[J]. Nature, 1999, 398:422-426. [14] van de Wetering M, Sancho E, Verweij C, et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells[J]. Cell, 2002, 111:241-250. [15] Gujral TS, MacBeath G. A system-wide investigation of the dynamics of wnt signaling reveals novel phases of transcriptional regulation[J]. PLoS ONE, 2010(4):e10024. [16] Mason MD, Davies G, Jiang WG. Cell adhesion molecules and adhe-sion abnormalities in prostate cancer[J]. Crit Rev Oncol Hema-tol, 2002, 41:11-28. [17] Lipschutz JH, Kissil JL. Expression of β-catenin and γ-catenin in epithelial tumor cell lines and characterization of a unique cell line[J]. Cancer Lett, 1998, 126:33-41. [18] Amit S, Hatzubai A, Birman Y, et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45:a molecular switch for the Wnt pathway[J]. Gene Dev, 2002, 16:1066-1076. [19] Liu C, Li Y, Semenov M, et al. Control of β-catenin phosphorylation/ degradation by a dual-kinase mechanism[J]. Cell, 2002, 108:837-847. [20] Davidson G, Wu W, Shen J, et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction[J]. Nature, 2005, 438:867-872. [21] Zeng X, Tamai K, Doble B, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation[J]. Nature, 2005, 438:873-877. [22] Behrens J, von Kries JP, Kühl, et al. Functional interaction of β-catenin with the transcription factor LEF-1[J]. Nature, 1996, 382:638-642. [23] Hecht A, Vleminckx K, Stemmler M. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates[J]. EMBO J, 2000, 19:1839-1850. [24] Kramps T, Peter O, Brunner E, et al. Wnt/wingless signaling requires BCL9/legless- mediated recruitment of pygopus to the nuclear β-catenin-TCF complex[J]. Cell, 2002, 109:47-60. [25] Hoffmans R, Stadeli R, Basler K. Pygopus and legless provide essential transcriptional coactivator functions to armadillo/β-catenin[J]. Curr Biol, 2005, 15:1207-1211. [26] Rohde F, Rimkus C, Friederichs J, et al. Expression of osteopontin, a target gene of de-regulated Wnt signaling, predicts survival in colon cancer[J]. Int J Cancer, 2007, 121(8):1717-1723. [27] Reya T, Clevers H. Wnt signaling in stem cells and cancer[J]. Nature, 2005, 34:843-850. [28] Mikami I, You L, He B, et al. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells[J]. BMC Cancer, 2005, 5(1):53-59. [29] You L, He B, Xu Z, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth[J]. Cancer Res, 2004, 64(15):5385-5389. [30] Nagayama S, Fukukawa C, Katagiri T, et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas[J]. Oncogene, 2005, 24(41):6201-6212. [31] Veeramachaneni NK, Kubokura H, Lin L, et al. Downregulation of beta catenin inhibits the growth of esophageal carcinoma cells[J]. J Thorac Cardiovasc Surg, 2004, 127(1):92-98. [32] Sinnberg T, Menzel M, Kaesler S, et al. Suppression of casein kinase 1alpha in melanoma cells induces a switch in beta-catenin signaling to promote metastasis[J]. Cancer Res, 2010, 70(17):6999-7009. [33] Legent K, Steinhauer J, Richard M, et al. A screen for X-linked mutations affecting Drosophila photoreceptor differentiation identifies Casein kinase 1α as an essential negative regulator of wingless signaling[J]. Genetics, 2012, 190(2):601-616. [34] Yanagawa S, Matsuda Y, Lee JS, et al. Casein kinase I phosphoryl-ates the Armadillo protein and induces its degradation in Drosophila[J]. EMBO J, 2002, 21:1733-1742. [35] Garcia-Rostan G, Tallini G, Herrero A, et al. Frequent mutation and nuclear localization of β-catenin in anaplastic thyroid carcinoma[J]. Cancer Res, 1999, 59:1811-1815. [36] Price MA. CKI, there's more than one:casein kinase I family members in Wnt and Hedgehog signaling[J]. Gene Dev, 2006, 20:399-410. [37] Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network[J]. Clin Cancer Res, 2007, 13(14):4042-4045. [38] Thorne CA, Hanson AJ, Schneider J, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α[J]. Nat Chem Biol, 2010, 6(11):829-836. [39] Barker N, Clevers H. Mining the Wnt pathway for cancer therapeu-tics[J]. Nat Rev Drug Discov, 2006, 5(12):997-1014. [40] Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer[J]. Nature, 2001, 411:349-354. [41] Ingham PW, McMahon AP. Hedgehog signaling in animal develo-pment:paradigms and principles[J]. Gene Dev, 2001, 15:3059-3087. [42] Varjosalo M, Taipale J. Hedgehog signaling[J]. Journal of Cell Science, 2007, 120:3-6. [43] Chamoun Z, Mann RK, Nellen D, et al. Skinny hedgehog, an acyltr-ansferase required for palmitoylation and activity of the hedgehog signal[J]. Science, 2001, 293:2080-2084. [44] Lee JD, Kraus P, Gaiano N, et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb develop-ment[J]. Dev Biol, 2001, 233:122-136. [45] Ruiz i Altaba A. Catching a Gli-mpse of Hedgehog[J]. Cell, 1997, 90:193-196. [46] Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer[J]. Nat Rev Drug Discov, 2006, 5(12):1026-1033. [47] Cohen MM Jr. The hedgehog signaling network[J]. Am J Med Genet A, 2003, 123(1):5-28. [48] Fuccillo M, Joyner AL, Fishell G. Morphogen to mitogen:the multiple roles of hedgehog signalling in vertebrate neural development[J]. Nat Rev Neurosci, 2006, 7(10):772-783. [49] Wang Y, McMahon AP, Allen BL. Shifting paradigms in Hedgehog signaling[J]. Curr Opin Cell Biol, 2007, 19:159-165. [50] Huangfu D. Anderson KV. Signaling from Smo to Ci/Gli:conservation and divergence of Hedgehog pathways from Drosophila to vertebrates[J]. Development, 2006, 133:3-14. [51] Kalderon D. Transducing the hedgehog signal[J]. Cell, 2000, 103:371-374. [52] Eaton S. Multiple roles for lipids in the Hedgehog signalling pathway[J]. Nat Rev Mol Cell Biol, 2008, 9(6):437-445. [53] Shahi MH, Lorente A, Castresana JS. Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma[J]. Oncol Rep, 2008, 19(3):681-618. [54] Lauth M, Toftg?rd R. Non-canonical activation of GLI transcription factors:implications for targeted anti-cancer therapy[J]. Cell Cycle, 2007, 6(20):2458-2463. [55] Yanai K, Naqai S, Wada J, et al. Hedgehog signaling pathway is a possible therapeutic target for gastric cancer[J]. J Surg Oncol, 2007, 95(1):55-62. [56] Aikin RA, Ayers KL, Thérond PP, et al. The role of kinases in the Hedgehog signalling pathway[J]. EMBO Reports, 2008, 9(4):330-334. [57] Oeckinghaus A, Wegener E, Welteke V, et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation[J]. EMBO J, 2007, 26(22):4634-4645. [58] Baldwin AS Jr. Series introduction:the transcripfion factor NF-κB and human disease[J]. J Clin Invest, 2001, 107(1):3-6. [59] Karin M, Cao Y, Greten FR, et al. NF-κB in cancer:from innocent bystander to major culprit[J]. Nat Rev Cancer, 2002, 2:301-310. [60] Lin X, Wang D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling[J]. Semin Immunol, 2004, 16:429-435. [61] Moynagh PN. The NF-κB pathway[J]. J Cell Sci, 2005, 118:4389-4392. [62] Bidère N, Ngo VN, Lee J, et al. Casein kinase 1a governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival[J]. Nature, 2009, 458(7234):92-97. [63] Wang Y, Sun X, Wu J, et al. Casein kinase 1alpha interacts with RIP1 and regulates NF-κB activation[J]. Biochemistry, 2008, 47(1):441-448. [64] Vousden KH. p53:death star[J]. Cell, 2000, 103:691-694. [65] Waning DL, Lehman JA, Batuello CN, et al. Controlling the Mdm2-Mdmx-p53 Circuit[J]. Pharmaceuticals(Basel), 2010, 3(5):1576-1593. [66] Gu JH, Kawai L, Nie H, et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53[J]. J Biol Chem, 2002, 277:19251-19254. [67] Wu S, Chen L, Becker A, et al. Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding[J]. Mol Cell Biol, 2012, 32(23):4821-4832. [68] Ramos YF, Stad R, Attema J, et al. Aberrant expression of MDMX proteins in tumor cells correlates with wild-type p53[J]. Cancer Res, 2002, 61:1839-1842. [69] Elyada E, Pribluda A, Goldstein RE, et al. CKIα ablation highlights a critical role for p53 in invasiveness control[J]. Nature, 2011, 470(7334):409-413. [70] Chen L, Li C, Pan Y, et al. Regulation of p53-MDMX interaction by casein kinase 1 alpha[J]. Mol Cell Biol, 2005, 25(15):6509-6520. [71] Wang L, Lu A, Zhou HX, et al. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development[J]. PLoS One, 2013, 8(5):e63173. [72] Quintavalle M, Sambucini S, Di Pietro C, et al. The α isoform of protein kinase CKI Is responsible for hepatitis C virus NS5A hype-rphosphorylation[J]. J Virol, 2006, 80(22):11305-11312. [73] Sudha G, Yamunadevi S, Tyagi N, et al. Structural and molecular basis of interaction of HCV non-structural protein 5A with human casein kinase 1α and PKR[J]. BMC Struct Biol, 2012, 1472(6807):12-28. [74] Zhang P, Bill K, Liu J, et al. MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling[J]. Cancer Res, 2012, 72(7):1751-1762. [75] Nyati S, Ranga R, Ross BD, et al. Molecular Imaging of GSK3β and CK1α kinases[J]. Anal Biochem, 2010, 405(2):246-254. |
[1] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[2] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[3] | 邹晨辰, 阮灵伟, 施泓. Wnt信号通路与无脊椎动物天然免疫[J]. 生物技术通报, 2021, 37(5): 182-196. |
[4] | 查星琴, 杨明华, 李永能, 赵素梅, 黄英. Leptin介导JAK/STAT信号通路对猪皮下前脂肪细胞脂类代谢调控的研究[J]. 生物技术通报, 2021, 37(2): 88-95. |
[5] | 胡启超, 罗仍卓么, 魏大为, 杨箭, 贾立, 王兴平, 马云. 固有免疫相关编码基因在奶牛乳腺炎调节中的研究进展[J]. 生物技术通报, 2020, 36(12): 239-246. |
[6] | 崔荣秀, 张议文, 陈晓倩, 谷彩红, 张荃. 植物bZIP参与胁迫应答调控的最新研究进展[J]. 生物技术通报, 2019, 35(2): 143-155. |
[7] | 郑伟刚, 靳明辉, SwapanChakrabarty, 肖彬, 萧玉涛, 袁海滨. 小地老虎不同组织表达差异揭示其翅发育机制[J]. 生物技术通报, 2019, 35(10): 102-110. |
[8] | 李妙, 周立军. TRAF6与肿瘤关系的研究进展[J]. 生物技术通报, 2017, 33(6): 24-31. |
[9] | 李安毅, 杨洋, 刘莹, 郭晓汐, 郝倩, 徐天瑞, 安输. A-Raf-S214C突变体的构建、表达及其对MAPK信号通路的影响[J]. 生物技术通报, 2017, 33(12): 185-190. |
[10] | 马石楠, 李忠耀, 郭兴荣. ANGPTL8调控糖代谢作用机制研究[J]. 生物技术通报, 2017, 33(11): 200-206. |
[11] | 王琪, 齐仁立, 王敬, 黄金秀. 氨基酸缺乏诱导细胞自噬及miRNA调控机制[J]. 生物技术通报, 2016, 32(9): 38-43. |
[12] | 杨梦思,周娜,王志钢,郝慧芳. 转录因子HIF-1α及其信号通路在疾病发生中的作用研究进展[J]. 生物技术通报, 2016, 32(8): 8-13. |
[13] | 贾晓阳, 付玉, 王潇楠, 王志钢, 郝慧芳. 黏着斑激酶信号通路在细菌侵入非吞噬细胞中的作用[J]. 生物技术通报, 2016, 32(7): 28-33. |
[14] | 何丽番,高海. Mecp2在斑马鱼胚胎神经发育中对NOTCH信号通路的调控[J]. 生物技术通报, 2016, 32(4): 228-233. |
[15] | 黄英, 杨明华, 孔令富, 郝美林, 高士争, 李永能, 赵素梅. Leptin介导AMPK信号通路对猪皮下前脂肪细胞脂类代谢调控的研究[J]. 生物技术通报, 2016, 32(2): 211-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||