生物技术通报 ›› 2015, Vol. 31 ›› Issue (2): 35-44.doi: 10.13560/j.cnki.biotech.bull.1985.2015.02.005
余小霞, 田健, 刘晓青, 伍宁丰
收稿日期:
2014-07-10
出版日期:
2015-02-05
发布日期:
2015-02-06
作者简介:
余小霞,硕士研究生,研究方向:微生物分子生物学与基因工程;E-mail:yuxiaoxia198921@sina.com
基金资助:
Yu Xiaoxia, Tian Jian, Liu Xiaoqing, Wu Ningfeng
Received:
2014-07-10
Published:
2015-02-05
Online:
2015-02-06
摘要: 枯草芽孢杆菌作为一种革兰氏阳性细菌,由于其具有非致病性、分泌蛋白能力强的特性和良好的发酵基础及生产技术,是目前原核表达系统中表达和分泌外源蛋白的理想宿主,成为原核表达系统中的一种重要的模式菌株。而实现外源蛋白的高效表达的关键因素之一是使用强并可控制的启动子。目前,枯草芽孢杆菌中常用的启动子为组成型、诱导物诱导型、时期特异性及自诱导型。详细介绍枯草芽孢杆菌表达系统以及其常用启动子的优缺点,并对克隆新的启动子的方法做了总结,旨为完善枯草表达系统和工业生产外源蛋白奠定基础。
余小霞, 田健, 刘晓青, 伍宁丰. 枯草芽孢杆菌表达系统及其启动子研究进展[J]. 生物技术通报, 2015, 31(2): 35-44.
Yu Xiaoxia, Tian Jian, Liu Xiaoqing, Wu Ningfeng. Research Progress of Bacillus subtilis Expression System and Its Promoter Regulatory Elements[J]. Biotechnology Bulletin, 2015, 31(2): 35-44.
[1]Harwood CR, Wipat A. Sequencing and functional analysis of the genome of Bacillus subtilis strain 168 [J]. FEBS Lett, 1996, 389(1):84-87. [2]张晓舟. 枯草杆菌新型表达系统和遗传操作体系的建立及应用[D]. 南京:南京农业大学, 2006. [3]Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate [J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44(10):1072. [4]Haldenwang WG. The sigma factors of Bacillus subtilis [J]. Microbiological Reviews, 1995, 59(1):1-30. [5]Tjalsma H, Bolhuis A, Jongbloed JD, et al. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome [J]. Microbiology and Molecular Biology Reviews, 2000, 64(3):515-547. [6]Bendtsen JD, Kiemer L, Fausb?ll A, et al. Non-classical protein secretion in bacteria [J]. BMC Microbiology, 2005, 5(1):58. [7]Tjalsma H, Antelmann H, Jongbloed JD, et al. Proteomics of protein secretion by Bacillus subtilis:separating the “secrets” of the secretome [J]. Microbiology and Molecular Biology Reviews, 2004, 68(2):207-233. [8]Fu LL, Xu ZR, Li WF, et al. Protein secretion pathways in Bacillus subtilis:Implication for optimization of heterologous protein secretion [J]. Biotechnology Advances, 2007, 25(1):1-12. [9]Banerjee S, Hansen JN. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic [J]. Journal of Biological Chemistry, 1988, 263(19):9508-9514. [10]Chung Y, Breidt F, Dubnau D. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis [J]. Molecular Microbiology, 1998, 29(3):905-913. [11]Wu XC, Lee W, Tran L, et al. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases [J]. Journal of Bacteriology, 1991, 173(16):4952-4958. [12] Murashima K, Chen CL, Kosugi A, et al. Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes[J]. Journal of Bacteriology, 2002, 184(1):76-81. [13] Plasmids SB, Harwood CR, Cutting SM(eds)//Molecular biological methods for Bacillus [J]. New York:John Wiley and Sons, 1990:75-174. [14] Yang MM, Zhang WW, Zhang XF, et al. Construction and characterization of a novel maltose inducible expression vector in Bacillus subtilis [J]. Biotechnology Letters, 2006, 28(21):1713-1718. [15] Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis [J]. Nature, 1997, 390(6657):249-256. [16] Lacey R, Chopra I. Genetic studies of a multi-resistant strain of Staphylococcus aureus [J]. Journal of Medical Microbiology, 1974, 7(2):285-297. [17]Iordanescu S, Surdeanu M, Della-Latta P, et al. Incompatibility and molecular relationships between small staphylococcal plasmids carrying the same resistance marker [J]. Plasmid, 1978, 1(4):468-479. [18]Iord?nescu S. Three distinct plasmids originating in the same Staphylococcus aureus strain [J]. Archives Roumaines de Pathologie Expérimentales et de Microbiologie, 1976, 35(1-2):111. [19]Hofemeister J, Israeli-Reches M, Dubnau D. Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome [J]. Molecular and General Genetics MGG, 1983, 189(1):58-68. [20]Bron S, Meijer W, Holsappel S, et al. Plasmid instability and molecular cloning in Bacillus subtilis [J]. Research in Microbiology, 1991, 142(7):875-883. [21]Bron S, Luxen E, Swart P. Instability of recombinant pUB110 plasmids in Bacillus subtilis:plasmid-encoded stability function and effects of DNA inserts [J]. Plasmid, 1988, 19(3):231-241. [22]Nagarajan V, Albertson H, Chen M, et al. Modular expression and secretion vectors for Bacillus subtilis [J]. Gene, 1992, 114(1):121-126. [23]Wang LF, Wong SL, Lee SG, et al. Expression and secretion of human atrial natriuretic α-factor in Bacillus subtilis using the subtilisin signal peptide [J]. Gene, 1988, 69(1):39-47. [24]Wu SC, Wong SL. Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis [J]. Journal of Biotechnology, 1999, 72(3):185-195. [25]Melnikov A, Youngman PJ. Random mutagenesis by recombinatio-nal capture of PCR products in Bacillus subtilis and Acinetobacter calcoaceticus [J]. Nucleic Acids Research, 1999, 27(4):1056-1062. [26]Chédin F, Noirot P, Biaudet V, et al. A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis [J]. Molecular Microbiology, 1998, 29(6):1369-1377. [27]ChedinF, Ehrlich SD, KowalczykowskiSC. The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro [J]. Journal of Molecular Biology, 2000, 298(1):7-20. [28]Hidenori S, Henner DJ. Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis [J]. Gene, 1986, 43(1):85-94. [29]Guérout-Fleury AM, Frandsen N, Stragier P. Plasmids for ectopic integration in Bacillus subtilis [J]. Gene, 1996, 180(1):57-61. [30]Vagner V, Dervyn E, Ehrlich SD. A vector for systematic gene inactivation in Bacillus subtilis [J]. Microbiology, 1998, 144(11):3097-3104. [31]Kaltwasser M, Wiegert T, Schumann W. Construction and application of epitope-and green fluorescent protein-tagging integration vectors for Bacillus subtilis [J]. Applied and Environmental Microbiology, 2002, 68(5):2624-2628. [32]Feucht A, Lewis PJ. Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis [J]. Gene, 2001, 264(2):289-297. [33]Lewis PJ, Marston AL. GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis [J]. Gene, 1999, 227(1):101-109. [34]Yuan G, Wong SL. Regulation of groE expression in Bacillus subtilis:the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence(CIRCE) [J]. Journal of Bacteriology, 1995, 177(19):5427-5433. [35]Zhang XZ, Cui ZL, Hong Q, et al. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800 [J]. Applied and Environmental Microbiology, 2005, 71(7):4101-4103. [36]Ye RQ, Kim JH, Kim BG, et al. High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis [J]. Biotechnology and Bioengineering, 1999, 62(1):87-96. [37]Yang MM, Zhang W, Ji SY, et al. Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system [J]. PLoS One, 2013, 8(2):9. [38]Yansura DG, Henner DJ. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis [J]. Proceedings of the National Academy of Sciences, 1984, 81(2):439-443. [39]Phan TTP, Nguyen HD, Schumann W. Novel plasmid-based expression vectors for intra-and extracellular production of recombinant proteins in Bacillus subtilis [J]. Protein Expression and Purification, 2006, 46(2):189-195. [40]Phan TTP, Nguyen HD, Schumann W. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements [J]. Journal of Biotechnology, 2012, 157(1):167-172. [41]Kim L, Mogk A, Schumann W. A xylose-inducible Bacillus subtilis integration vector and its application [J]. Gene, 1996, 181(1):71-76. [42]Zukowski MM, Miller L. Hyperproduction of an intracellular heterologous protein in a sacU sup hsup mutant of Bacillus subtilis [J]. Gene, 1986, 46(2):247-255. [43]Lee JK, Edwards CW, Hulett FM. Bacillus licheniformis APase I gene promoter:a strong well-regulated promoter in B. subtilis [J]. Journal of General Microbiology, 1991, 137(5):1127-1133. [44]Yamamoto H, Murata M, Sekiguchi J. The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis [J]. Molecular Microbiology, 2000, 37(4):898-912. [45]Geissend?rfer M, Hillen W. Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encodedtet regulatory elements [J]. Applied Microbiology and Biotechnology, 1990, 33(6):657-663. [46]Bongers RS, Veening JW, Van Wieringen M, et al. Development and characterization of a subtilin-regulated expression system in Bacillus subtilis:strict control of gene expression by addition of subtilin [J]. Applied and Environmental Microbiology, 2005, 71(12):8818-8824. [47]Toymentseva AA, Schrecke K, Sharipova MR, et al. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter [J]. Microbial Cell Factories, 2012, 11(1):143. [48]Phan TTP, Schumann W. Development of a glycine-inducible exp-ression system for Bacillus subtilis [J]. Journal of Biotechnology, 2007, 128(3):486-499. [49]Heravi KM, Wenzel M, Altenbuchner J. Regulation of mtl operon promoter of Bacillus subtilis:requirements of its use in expression vectors [J]. Microbial Cell Factories, 2011, 10:83. [50]Yang MM, Zhang WW, Chen YL, et al. Development of a Bacillus subtilis expression system using the improved Pglv promoter [J]. Microbial Cell Factories, 2010, 9(1):55. [51]Panahi R, Vasheghani-Farahani E, Shojaosadati SA, et al. Induction of Bacillus subtilis expression system using environmental stresses and glucose starvation [J]. Annals of Microbiology, 2014, 64(2):879-882. [52]Blom EJ, Ridder AN, Lulko AT, et al. Time-resolved transcripto-mics and bioinformatic analyses reveal intrinsic stress responses during batch culture of Bacillus subtilis [J]. PLoS One, 2011, 6(11):e27160. [53]Nijland R, Lindner C, Van Hartskamp M, et al. Heterologous production and secretion of Clostridium perfringens β-toxoid in closely related Gram-positive hosts [J]. Journal of Biotechnology, 2007, 127(3):361-372. [54]Jan J, Valle F, Bolivar F, et al. Construction of protein overproducer strains in Bacillus subtilis by an integrative approach [J]. Applied Microbiology and Biotechnology, 2001, 55(1):69-75. [55]Lee SJ, Pan JG, Park SH, et al. Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis [J]. Journal of Biotechnology, 2010, 149(1):16-20. [56]Wenzel M, Müller A, Siemann-Herzberg M, et al. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation [J]. Applied and Environmental Microbiology, 2011, 77(18):6419-6425. [57]Gat O, Inbar I, Aloni-Grinstein R, et al. Use of a promoter trap system in Bacillus anthracis and Bacillus subtilis for the development of recombinant protective antigen-based vaccines [J]. Infection and Immunity, 2003, 71(2):801-813. [58]Harwood CR, Williams DM, Lovett PS. Nucleotide sequence of a Bacillus pumilus gene specifying chloramphenicol acetyltransferase [J]. Gene, 1983, 24(2):163-169. [59]Wang J, Ai X, Mei H, et al. High-throughput identification of promoters and screening of highly active promoter-5’-UTR DNA region with different characteristics from Bacillus thuringiensis [J]. PLoS One, 2013, 8(5):e62960. |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[3] | 杨冬, 唐璎. 枯草芽孢杆菌WTX1胞外酶降解AFB1酶学特性及降解位点分析[J]. 生物技术通报, 2023, 39(4): 93-102. |
[4] | 陈光, 李佳, 杜瑞英, 王旭. pOsHAK1:OsFLN2提高水稻的糖代谢水平和抗旱性[J]. 生物技术通报, 2022, 38(8): 92-100. |
[5] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[6] | 马艳琴, 邱益彬, 李莎, 徐虹. 透明质酸的生物合成及其代谢工程的研究进展[J]. 生物技术通报, 2022, 38(2): 252-262. |
[7] | 张倩, 徐春燕, 张铎, 王亚会, 梁新盈, 李慧. 黄褐土玉米秸秆腐解菌株筛选及其促腐能力研究[J]. 生物技术通报, 2022, 38(12): 233-243. |
[8] | 李丹, 杜梦潭, 修明霞, 刘兴健, 张志芳, 李轶女. 羊α干扰素在家蚕中的表达及抗小反刍兽疫病毒活性测定[J]. 生物技术通报, 2022, 38(1): 187-193. |
[9] | 苗华彪, 曹艳, 杨梦瀚, 黄遵锡. 基于信号肽策略提高外源蛋白在枯草芽孢杆菌中的表达[J]. 生物技术通报, 2021, 37(6): 259-271. |
[10] | 唐璎, 黄佳, 邓展瑞, 杨晓楠. 一株枯草芽孢杆菌降解黄曲霉毒素B1产物分析[J]. 生物技术通报, 2021, 37(12): 82-90. |
[11] | 张维娇, 金学荣, 徐雅晴, 李江华, 堵国成, 康振. 枯草芽孢杆菌表达与调控工具相关研究进展[J]. 生物技术通报, 2020, 36(4): 26-33. |
[12] | 付首颖, 夏苗苗, 张祎凝, 刘川, 涂然, 张大伟. 核黄素工业菌株高通量筛选方法的建立和应用[J]. 生物技术通报, 2020, 36(4): 47-53. |
[13] | 张春晨, 胡双艳, 阮海华. 人源溶菌酶在大肠杆菌中的表达与复性研究[J]. 生物技术通报, 2020, 36(3): 153-161. |
[14] | 赵晓霞, 牛世全, 文娜, 苏锋锋. 黄芪根腐病生防芽孢杆菌的筛选鉴定与盆栽防效试验[J]. 生物技术通报, 2019, 35(9): 107-111. |
[15] | 邱锦, 黄火清, 姚斌, 罗会颖. 解淀粉芽孢杆菌淀粉酶催化活力改良及其在枯草芽孢杆菌中的高效表达[J]. 生物技术通报, 2019, 35(9): 134-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||