[1] Nakatogawa H, Kamada Y, Kamada Y. Dynamics and diversity in autophagy mechanisms:lessons from yeast[J]. Nat Rev Mol Cell Biol, 2009, 10(7):458-467. [2] Yang Z, Klionsky DJ. Eaten alive:a history of macroautophagy[J]. Nat Cell Biol, 2010, 12(9):814-822. [3] Kim I, Rodriguez-Enriquez S, LemastersJJ. Selective degradation of mitochondria by mitophagy[J]. Arch Biochem Biophys, 2007, 462:245-253. [4] MinibayevaF, Dmitrieva S, Ponomareva A. Oxidative stress-induced autophagy in plants:the role of mitochondria[J]. Plant Physiology and Biochemistry, 2012, 59:11-19. [5] Twig G, Elorza A, Molina A, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. EMBO Journal, 2008, 27(2):433-446. [6] Bhatia-Kissova I, Camougrand N. Mitophagy:a process that adapts to the cell physiology[J]. Int J Biochem Cell Biol, 2013, 45:30-33. [7] Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1):31-42. [8] Liu Y, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana[J]. PLoS One, 2010. 5(7):e11883. [9] Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J]. Dev Cell, 2009, 17(1):87-97. [10] Kondo-Okamoto N, Noda NN, Suzuki SW, et al. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy[J]. J Biol Chem, 2012, 287(13):10631-10638. [11] Kanki T, Klionsky DJ, Okamoto K. Mitochondria autophagy in yeast[J]. Antioxid Redox Signal, 2011, 14(10):1989-2001. [12] Kanki T, Wang K, Cao Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy[J]. Dev Cell, 2009, 17(1):98-109. [13] Hirota Y, Kang D, Kanki T. The physiological role of mitophagy:new insights into phosphorylation events[J]. Int J Cell Biol, 2012, 2012:354914. [14] Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homolo-gue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J, 2000, 19:5720-5728. [15] Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature, 2000, 408:488-492. [16] Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182):1069-1075. [17] Kanki T, Wang K, Baba M, et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy[J]. Mol Biol Cell, 2009, 20(22):4730-4738. [18] Noda NN, Kumeta H, Nakatogawa H, et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy[J]. Genes Cells, 2008, 13(12):1211-1218. [19] Pankiv S, Clausen T, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33):24131-24145. [20] Ichimura Y, Kumanomidou T, Sou Y, et al. Structural basis for sorting mechanism of p62 in selective autophagy[J]. J Biol Chem, 2008, 283(33):22847-22857. [21] Yorimitsu T, Klionsky DJ. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway[J]. Mol Biol Cell, 2005, 16(4):1593-1605. [22] Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death and Differentiation, 2013, 20(1):31-42. [23] Aoki Y, Kanki T, Hirota Y, et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy[J]. Mol Biol Cell, 2011, 22(17):3206-3217. [24] Springer W, Kahle PJ. Regulation of PINK1-Parkin-mediated mitophagy[J]. Autophagy, 2011, 7(3):266-278. [25] Youle RJ, Narendra DP. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol, 2011, 12(1):9-14. [26] Vazquez-Martin A, Cufi S, Corominas-Faja B, et al. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency:new insight into the role of mitophagy in cell stemness[J]. Aging, 2012, 4(6):393-401. [27] Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance[J]. J Cell Sci, 2012, 125(Pt 4):795-799. [28] Gegg ME, Cooper JM, Chau KY, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy[J]. Hum Mol Genet, 2010, 19(24):4861-4870. [29] Journo D, Mor A, Abeliovich H. Aup1-mediated regulation of Rtg3 during mitophagy[J]. J Biol Chem, 2009, 284:35885-35895. [30] Kim Y, Park J, Kim S, et al. PINK1 controls mitochondrial localiza-tion of Parkin through direct phosphorylation[J]. Biochem Biophys Res Commun, 2008, 377(3):975-980. [31] Moriwaki Y, Kim YJ, Ido Y, et al. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteaso-me-dependent manner[J]. Neurosci Res, 2008, 61(1):43-48. [32] Sha D, Chin LS, Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling[J]. Hum Mol Genet, 2010, 19(2):352-363. [33] Huang C, Andres AM, Ratliff EP, et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1[J]. PLoS One, 2011, 6(6):20975-20975. [34] Van Humbeeck C, Cornelissen T, Vandenberghe W. Ambra1:a Parkin-binding protein involved in mitophagy[J]. Autophagy, 2011, 7(12):1555-1556. [35] Van Humbeeck C, Cornelissen T, Hofkens H, et al. Parkin interacts with Ambra1 to induce mitophagy[J]. J Neurosci, 2011, 31(28):10249-10261. [36] Liu L, Feng D, Chen M, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nat Cell Biol, 2012, 14(2):177-185. [37] Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep, 2010, 11(1):45-51. [38] Chen G, Cizeau J, Velde C, et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins[J]. J Biol Chem, 1999, 274(1):7-10. [39] Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells[J]. Nature, 2008, 454(7201):232-235. [40] Yorimitsu T, Klionsky DJ. Autophagy:molecular machinery for self-eating[J]. Cell Death Differ, 2005, 12:1542-1552. [41] Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation[J]. Proc Natl Acad Sci USA, 2007, 104(49):19500-19505. [42] Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy[J]. Cell Death Differ, 2009, 16(7):939-946. [43] Maiuri MC, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes[J]. Cell Death Differ, 2009, 16(1):87-93. [44] Xiong Y, Contento A, Nguyen PQ, et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis[J]. Plant Physiol, 2007, 143(1):291-299. [45] Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, et al. Understanding the “lethal” drivers of tumor-stroma co-evolution:emerging role(s)for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment[J]. Cancer Biol Ther, 2010, 10(6):537-542. [46] Li F, Chung T, Vierstra RD. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitoph-agy in Arabidopsis[J]. Plant Cell, 2014, 26:788-807. [47] Betin VM, Lane JD. Atg4D at the interface between autophagy and apoptosis[J]. Autophagy, 2009, 5(7):1057-1059. [48] Woo J, Park E, andDinesh-Kumar SP. Differential processing of Ar-abidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases[J]. Proc Natl Acad Sci USA, 2014, 111(2):863-868. [49] Wang X, Leung AW, Luo J, Xu C. TEM observation of ultrasound-induced mitophagy in nasopharyngeal carcinoma cells in the presence of curcumin[J]. Exp Ther Med, 2012, 3:146-148. |