[1] Hibbett DS, Binder M, Bischoff JF, et al.A higher-level phylogenetic classification of the Fungi[J]. Mycological Research, 2007, 111(5):509-547. [2] Bolton MD, Thomma BPHJ, Nelson BD.Sclerotinia sclerotiorum(Lib. )de Bary:biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16. [3] Adams PB, Ayers WA.Ecology of Sclerotinia species[J]. Phytopathology, 1979, 69(8):896-899. [4] Clarkson JP, Phelps K, Whipps JM, et al.Forecasting Sclerotinia disease on lettuce:a predictive model for carpogenic germination of Sclerotinia sclerotiorum sclerotia[J]. Phytopathology, 2007, 97(5):621-631. [5] Bashi ZD, Rimmer SR, Khachatourians GG, et al.Factors governing the regulation of Sclerotinia sclerotiorum cutinase A and polygalacturonase 1 during different stages of infection[J]. Canadian Journal of Microbiology, 2012, 58(5):605-616. [6] Zhang H, Wu Q, Cao S, et al.A novel protein elicitor(SsCut)from Sclerotinia sclerotiorum induces multiple defense responses in plants[J]. Plant Molecular Biology, 2014, 86(4-5):495-511. [7] Amselem J, Cuomo CA, van Kan JA, et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea[J]PLoS Genetics, 2011, 7(8):e1002230. [8] Derbyshire M, Denton-Giles M, Hegedus D, et al.The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens[J]. Genome Biology and Evolution, 2017, 9(3):593-618. [9] Seifbarghi S, Borhan MH, Wei Y, et al.Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus[J]. BMC Genomics, 2017, 18(1):266. [10] Kasza Z, Vagvölgyi C, Févre M, Cotton P.Molecular characteriza-tion and in planta detection of Sclerotinia sclerotiorum endopolyga-lacturonase genes[J]. Current Microbiology, 2004, 48(3):208-213. [11] Bashi ZD, Rimmer SR, Khachatourians GG, et al.Brassica napus polygalacturonase inhibitor proteins inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants[J]. Canadian Journal of Microbiology, 2013, 59(2):79-86. [12] Yu Y, Xiao J, Du J, et al.Disruption of the gene encoding endo-β-1, 4-xylanase affects the growth and virulence of Sclerotinia sclerotiorum[J]. Frontiers in Microbiology, 2016, 7:1787. [13] Oliveira MB, de Andrade RV, Grossi-de-Sá MF, et al. Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum-Phaseolus vulgaris interaction[J]. Frontiers in Microbiology, 2015, 6:1162. [14] Godoy G, Steadman JR, Dickman MB, et al.Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris[J]. Physiological and Molecular Plant Pathology, 1990, 37(3):179-191. [15] Heller A, Witt-Geiges T.Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis[J]. PLoS One, 2013, 8(8):e72292. [16] Uloth MB, Clode PL, You MP, et al.Calcium oxalate crystals:an integral component of the Sclerotinia sclerotiorum/Brassica carinata pathosystem[J]. PLoS One, 2015, 10(3):e0122362. [17] Guimaraes RL, Stotz HU.Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection[J]. Plant Physiology, 2004, 136(3):3703-3711. [18] Williams B, Kabbage M, Kim HJ, et al.Tipping the balance:Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. PLoS Pathogens, 2011, 7(6):e1002107. [19] Kabbage M, Williams B, Dickman MB.Cell death control:the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum[J]. PLoS Pathogens, 2013, 9(4):e1003287. [20] Rollins JA.The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(9):785-795. [21] Xu L, Xiang M, White D, et al.pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum[J]. Environmental Microbiology, 2015, 17(8):2896-2909. [22] Stergiopoulos I, de Wit PJ. Fungal effector proteins[J]. Annual Review of Phytopathology, 2009, 47(1):233-263. [23] Lo Presti L, Lanver D, Schweizer G, et al.Fungal effectors and plant susceptibility[J]. Annual Review of Plant Biology, 2015, 66(1):513-545. [24] Ciuffetti LM, Manning VA, Pandelova I, et al.Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction[J]. New Phytologist, 2010, 187(4):911-919. [25] Marshall R, Kombrink A, Motteram J, et al.Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat[J]. Plant Physiology, 2011, 156(2):756-769. [26] Lorang J, Kidarsa T, Bradford CS, et al.Tricking the guard:exploiting plant defense for disease susceptibility[J]. Science, 2012, 338(6107):659-662. [27] Kabbage M, Yarden O, Dickman MB.Pathogenic attributes of Sclerotinia sclerotiorum:switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233:53-60. [28] Zhu W, Wei W, Fu Y, et al.A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance[J]. PLoS One, 2013, 8(1):e53901. [29] Guyon K, Balague C, Roby D, et al.Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum[J]. BMC Genomics, 2014, 15:336. [30] Lyu X, Shen C, Fu Y, et al.A small secreted virulence-related prot- ein is essential for the necrotrophic interactions of Sclerotinia scle-rotiorum with its host plants[J]. PLoS Pathogens, 2016, 12(2):e1005435. [31] Yang G, Tang L, Gong Y, et al.A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum[J]. New Phytologist, 2018 217(2):739-755. [32] Dickman MB, de Figueiredo P. Death be not proud-cell death control in plant fungal interactions[J]. PLoS Pathogens, 2013, 9(9):e1003542. [33] Bashi ZD, Hegedus DD, Buchwaldt L, et al.Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides(NEPs)[J]. Molecular Plant Pathology, 2010, 11(1):43-53. [34] Frías M, González M, González C, et al.BcIEB1, a Botrytis cinerea secreted protein, elicits a defense response in plants[J]. Plant Science, 2016, 250:115-124. [35] González M, Brito N, González C.The Botrytis cinerea elicitor protein BcIEB1 interacts with the tobacco PR5-family protein osmotin and protects the fungus against its antifungal activity[J]. New Phytologist, 2017, 215(1):397-410. [36] Franco-Orozco B, Berepiki A, Ruiz O, et al.A new proteinaceous pathogen-associated molecular pattern(PAMP)identified in Ascomycete fungi induces cell death in Solanaceae[J]. New Phytologist, 2017, 214(4):1657-1672. [37] Xiao X, Xie J, Cheng J, et al.Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development[J]. Molecular Plant-Microbe Interactions, 2014, 27(1):40-55. [38] Yu Y, Xiao J, Zhu W, et al.Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(8):1052-1061. [39] Guo X, Stotz HU.Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20(11):1384-1395. [40] Novakova M, Sasek V, Dobrev PI, et al.Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph[J]. Plant Physiology and Biochemistry, 2014, 80:308-317. [41] Djamei A, Schipper K, Rabe F, et al.Metabolic priming by a secreted fungal effector[J]. Nature, 2011, 478(7369):395-398. [42] Lyu X, Shen C, Fu Y, et al.Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development[J]. Scientific Reports, 2015, 5:15565. [43] Zhang WG, Fraiture M, Kolb D, et al.Arabidopsis RECEPTOR-LIKE PROTEIN30 and receptor-like kinase SUPPRESSOR OF BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi[J]. The Plant Cell, 2013, 25(10):4227-4241. [44] Liang Y, Yajima W, Davis MR, et al.Disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on canola(Brassica napus)[J]. Canadian Journal of Plant Pathology, 2013, 35(1):46-55. [45] Kim HJ, Chen C, Kabbage M, et al.Identification and characteriz-ation of Sclerotinia sclerotiorum NADPH oxidases[J]. Appl Environ Microbiol, 2011, 77(21):7721-7729. [46] Li M, Liang X, Rollins JA.Sclerotinia sclerotiorum γ-glutamyl transpeptidase(Ss-Ggt1)is required for regulating glutathione accumulation and development of sclerotia and compound appressoria[J]. Molecular Plant-Microbe Interactions, 2012, 25(3):412-420. [47] Veluchamy S, Williams B, Kim K, et al.The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production[J]. Physiological and Molecular Plant Pathology, 2012, 78:14-23. [48] Xu L, Chen W.Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum[J]. Molecular Plant-Microbe Interactions, 2013, 26(4):431-441. [49] Yu Y, Xiao J, Yang Y, et al.Ss-Bi1 encodes a putative BAX inhibitor-1 protein that is required for full virulence of Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2015, 90:115-122. [50] Fan H, Yu G, Liu Y, et al.An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(7):963-975. [51] Donaldson PA, Anderson T, Lane BG, et al.Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2. 8(germin)gene are resistant to the oxalate secreting pathogen Sclerotina sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2001, 59:297-307. [52] Liu F, Wang M, Wen J, et al.Overexpression of barley oxalate oxidase gene induces partial leaf resistance to Sclerotinia sclerotiorum in transgenic oilseed rape[J]. Plant Pathology, 2015, 64(6):1407-1416. [53] Zhang Y, Wang X, Chang X, et al.Overexpression of germin-like protein GmGLP10 enhances resistance to Sclerotinia sclerotiorum in transgenic tobacco[J]. Biochemical and Biophysical Research Communications, 2018, 497(1):160-166. [54] Cunha WG, Tinoco MLP, Pancoti HL, et al.High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene[J]. Plant Pathology, 2010, 59(4):654-660. [55] Ghosh S, Narula K, Sinha A, et al.Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism against Sclerotinia[J]. Journal of Proteomics, 2016, 143:242-253. [56] Gamir J, Darwiche R, van’t Hof P, et al. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein[J]. The Plant Journal, 2017, 89(3):502-509. [57] Ziaei M, Motallebi M, Zamani MR, et al.Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola(Brassica napus)confers enhanced resistance to Sclerotinia sclerotiorum[J]. Biotechnology Letters, 2016, 38(6):1021-1032. [58] Albert I, Böhm H, Albert M, et al.An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nature Plants, 2015, 1:15140. |