[1] Grissa I, Vergnaud G, Pourcel C.The CRISPRdb database tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8(1):172-178. [2] Lin YN, Cradick TJ, Brown MT, et al.CRISPR/Cas9 systems have off-target activity with inser-tions or deletions between target DNA and guide RNA sequences[J]. Nucleic Acids Research, 2014, 42(11):7473-7485. [3] Karginov FV, Hannon GJ.The CRISPR system:small RNA-guided defense in bacteria and archaea[J]. Mol Cell, 2010, 37(1):7-19. [4] Villion M, Moineau S.The double-edged sword of CRISPR-Cas systems[J]. Cell Research, 2013, 23(1):15-17. [5] Mohanraju P, Makarova KS, Zetsche B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J]. Science, 2016, 353(6299):aad5147. [6] Doudna JA, Charpentier E.The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1077-1087. [7] Fu YF, Foden JA, Khayter C, et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826. [8] Fu YF, Sander JD, Reyon D, et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. [9] Duan JZ, Lu GQ, Xie Z, et al.Genome-wide identification of CRISPR/Cas9 off-targets in human genome[J]. Cell Research, 2014, 24(8):1009-1012. [10] Hsu PD, Scott DA, et al.DNA targeting speci-ficity of RNA-guide-dCas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832. [11] Pattanayak V, Lin S, Guilinger JP, et al.High-throughput profiling of off-targetDNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9):839-843. [12] Guilinger JP, Thompson DB, Liu DR.Fusion of catalytically inactive Cas9 to Fok I nuclease improves the specificity of genome modification[J]. Nat Biotechnol, 2014, 32(6):577-582. [13] Tsai SQ, Wyvekens N, Khayter C, et al.Dimeric CRISPR RNA-guided Fok I nucleases for highly specific genome editing[J]. Nat Biotechnol, 2014, 32(6):569-576. [14] Lusser M, Parisi C, Plan D, et al.Deployment of new biotechnolo-gies in plant breeding[J]. Nat Biotechnol, 2012, 3:231-239. [15] Sternberg SH, et al.DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490):62-67. [16] DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Research, 2013, 41(7):4336-4343. [17] Bao ZH, Xiao H, et al.Homology-integrated CRISPR-Cas(HI-CR-ISPR)system for one step multigene disruption in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2014, 4(5):585-594. [18] Jakočiūnas T, Bonde I, Herrgard M, et al.Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28:213-222. [19] Jacobs JZ, Ciccaglione KM, Tournier V, et al.Implementation of the CRISPR-Cas9 system in fission yeast[J]. Nature Communications, 2014, 5(3):5344-5349. [20] Stovicek V, Borodina I, Forster J.CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains[J]. Metab Eng Commun, 2015, 2:13-22. [21] Horwitz AA, Walter JM, Schubert MG, et al.Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas[J]. Cell Systems, 2015, 1(1):88-96. [22] Schwartz CM, Hussain MS, Blenner M, et al.Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica[J]. ACS Synth Biol, 2016, 5(4):356-362. [23] Qin H, Xiao H, Zou G, et al.CRISPR-Cas9 assisted gene disruption in the higher fungus ganoderma species[J]. Process Biochemistry, 2017, 56:57-61. [24] Sugano SS, et al.Genome editing in the mushroom-forming basidio-mycete Coprinopsis cinerea, optimized by a high-throughput transfo-rmation system[J]. Scientific Rep, 2017, 7(1):1260-1265. [25] Liu R, Chen L, Jiang Y, et al.Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discovery, 2015, 1:15007-15015. [26] Pohl C, et al.CRISPR/Cas9 based genome editing of Penicillium chrysogenum[J]. ACS Synth Biol, 2016, 5(7):754-764. [27] Jiang D, Zhu W, Wang Y, et al.Molecular tools for functional genomics in filamentous fungi:recent advances and new strategies[J]. Biotechnol Adv, 2013, 31(8):1562-1574. [28] Katayama T, et al.Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae[J]. Biotechnol Lett, 2016, 38(4):637-642. [29] 林良才, 李金根, 王邦, 等. 粗糙脉孢菌木质纤维素降解利用研究进展[J]. 生物加工过程, 2014, 1(1):28-36. [30] Matsuura T, Baek M, Kwon J, et al.Efficient gene editing in Neurospora crassa with CRISPR technology[J]. Fungal Biology & Biotechnology, 2015, 2(1):4-11. [31] Fuller KK, Chen S, Loros JJ, et al.Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus[J]. Eukaryotic Cell, 2015, 14(11):1073-1079. [32] Zhang C, Meng X, Wei X, et al.Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genet Biol, 2016, 86:47-57. [33] Schuster M, Schweizer G, Reissmann S, et al.Genome editing in Ustilago maydis using the CRISPR-Cas system[J]. Fungal Genet Biol, 2015, 89:3-9. [34] Selmecki AM, Dulmage K, et al.Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance[J]. PLoS Genetics, 2009, 5(10):e1000705. [35] Selmecki A, et al.Genomic plasticity of the human fungal pathogen Candida albicans[J]. Eukaryot Cell, 2010, 9(7):991-1008. [36] Selmecki A, Forche A, Berman J.Aneuploidy and isochromosome formation in drug-resistant Candida albicans[J]. Science, 2006, 313(5785):367-370. [37] Selmecki A, Forche A, Berman J.Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains[J]. Mol Microbiol, 2005, 5:1553-1565. [38] Vyas VK, Barrasa MI, Fink GR.A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families[J]. Science advances, 2015, 1(3):e1500248. [39] Arazoe T, Tetsuo O, Kennosuke M, et al.Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnol Bioeng, 2015, 12:2543-2549. [40] Nødvig CS, Nielsen JB, Kogle ME, et al.A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One, 2015, 10(7):e0133085. |