[1] Pan M, Chu L.Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops[J]. Ecotoxicology and Environmental Safety, 2016, 126:228-237. [2] Daghrir R, Drogui P, Dimboukou-Mpira A, et al.Photoelectrocata-lytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process[J]. Chemosphere, 2013, 93(11):2756-2766. [3] Wammer KH, Slattery MT, Stemig AM, et al.Tetracycline photolysis in natural waters:loss of antibacterial activity[J]. Chemosphere, 2011, 85(9):1505-1510. [4] Kim KR, Owens G, Kwon SI, et al.Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment[J]. Water, Air, & Soil Pollution, 2011, 214(1-4):163-174. [5] 田甜甜, 王瑞飞, 杨清香. 抗生素耐药基因在畜禽粪便-土壤系统中的分布, 扩散及检测方法[J]. 微生物学通报, 2016, 43(8):1844-1853. [6] 洪波, 曾春芳, 高峰, 等. 高效液相色谱—紫外法测定水产品中四环素类, 喹诺酮类抗生素残留[J]. 湖南农业科学, 2013(21):24. [7] Cháfer-Pericás C, Maquieira A, Puchades R, et al.Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS[J]. Food Control, 2011, 22(6):993-999. [8] Cháfer-Pericás C, Maquieira A, Puchades R.Fast screening methods to detect antibiotic residues in food samples[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9):1038-1049. [9] Virolainen NE, Pikkemaat MG, Elferink JA, et al.Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria[J]. Journal of Agricultural and Food Chemistry, 2008, 56(23):11065-11070. [10] Westerhoff P, Song G, Hristovski K, et al.Occurrence and removal of titanium at full scale wastewater treatment plants:implications for TiO2 nanomaterials[J]. Journal of Environmental Monitoring, 2011, 13(5):1195-1203. [11] 孙刚, 袁守军, 彭书传, 等. 固相萃取-高效液相色谱法测定畜禽粪便中的土霉素, 金霉素和四环素[J]. 环境化学, 2010, 29(4):739-743. [12] Sayılkan F, Asiltürk M, Kiraz N, et al.Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate[J]. Journal of Hazardous Materials, 2009, 162(2-3):1309-1316. [13] Zhu Z, Cai H, Sun DW.Titanium dioxide(TiO2)photocatalysis technology for nonthermal inactivation of microorganisms in foods[J]. Trends in Food Science & Technology, 2018, 75:23-35. [14] Athanasekou CP, Likodimos V, Falaras P.Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water[J]. Journal of Environmental Chemical Engineering, 2018, 6(6):7386-7394. [15] Huang Z, Maness PC, Blake DM, et al.Bactericidal mode of titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2000, 130(2-3):163-170. [16] Sani-Kast N, Scheringer M, Slomberg D, et al.Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles[J]. Science of the Total Environment, 2015, 535:150-159. [17] Sunada K, Watanabe T, Hashimoto K.Studies on photokilling of bacteria on TiO2 thin film[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 156(1-3):227-233. [18] Suresh AK, Pelletier DA, Doktycz MJ.Relating nanomaterial properties and microbial toxicity[J]. Nanoscale, 2013, 5(2):463-474. [19] Wang Z, Lee YH, Wu B, et al.Anti-microbial activities of aerosolized transition metal oxide nanoparticles[J]. Chemosphere, 2010, 80(5):525-529. [20] Wang N, Guo X, Xu J, et al.Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China[J]. Journal of Environmental Science and Health, Part B, 2014, 49(7):468-479. [21] Erdem A, Metzler D, Cha DK, et al.The short-term toxic effects of TiO2 nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation[J]. Environmental Science and Pollution Research, 2015, 22(22):17917-17924. [22] Rossi-Rodrigues BC, Brochetto-Braga MR, Tauk-Tornisielo SM, et al.Comparative growth of trichoderma strains in different nutritional sources, using bioscreen c automated system[J]. Brazilian Journal of Microbiology, 2009, 40(2):404-410. [23] Ren N, Li R, Chen L, et al.In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants[J]. Journal of Materials Chemistry, 2012, 22(36):19151-19160. [24] Jeon CO, Lee DS, Park JM.Microbial communities in activated sludge performing enhanced biological phosphorus Removal in a sequencing batch reactor[J]. Water Research, 2003, 37(9):2195-2205. [25] Rizzo L, Della Sala A, Fiorentino A, et al.Disinfection of urban wastewater by solar driven and UV lamp-TiO2 photocatalysis:Effect on a multi drug resistant Escherichia coli strain[J]. Water Research, 2014, 53:145-152. [26] Fernández P, Blanco J, Sichel C, et al.Water disinfection by solar photocatalysis using compound parabolic collectors[J]. Catalysis Today, 2005, 101(3-4):345-352. [27] Rosi-Marshall EJ, Kelly JJ.Antibiotic stewardship should consider environmental fate of antibiotics[M]. ACS Publications, 2015. [28] Dodd MC.Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14(7):1754-1771. [29] Zhu YG, Johnson TA, Su JQ, et al.Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110(9):3435-3440. [30] Nolivos S, Cayron J, Dedieu A, et al.Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer[J]. Science, 2019, 364(6442):778-782. [31] Blair JM, Webber MA, Baylay AJ, et al.Molecular mechanisms of antibiotic resistance[J]. Nature Reviews Microbiology, 2015, 13(1):42. [32] 张嘉明, 张洪光, 吴瑞, 等. 二氧化钛纳米棒的制备及抗菌性能研究[J]. 中国无机分析化学, 2018, 8(6):68-70. [33] Chen WR, Huang CH.Transformation of tetracyclines mediated by Mn(II)and Cu(II)ions in the presence of oxygen[J]. Environmental Science & Technology, 2008, 43(2):401-407. [34] Reyes C, Fernandez J, Freer J, et al.Degradation and inactivation of tetracycline by TiO2 photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006, 184(1-2):141-146. [35] Iswarya V, Bhuvaneshwari M, Alex S A, et al.Combined toxicity of two crystalline phases(anatase and rutile)of Titania nanoparticles towards freshwater microalgae:Chlorella sp.[J]. Aquatic Toxicology, 2015, 161:154-169. [36] Wang Z, Wang S, Peijnenburg W J.Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol:independent action surpasses concentration addition[J]. Chemosphere, 2016, 156:8-13. [37] Qi N, Wang P, Wang C, et al.Effect of a typical antibiotic(tetracycline)on the aggregation of TiO2 nanoparticles in an aquatic environment[J]. Journal of Hazardous Materials, 2018, 341:187-197. [38] Nwosu VC.Antibiotic resistance with particular reference to soil microorganisms[J]. Research in Microbiology, 2001, 152(5):421-430. [39] Salyers A, Shoemaker NB.Reservoirs of antibiotic resistance genes[J]. Animal Biotechnology, 2006, 17(2):137-146. [40] Chen Z, Zhang Y, Gao Y, et al.Influence of dissolved organic ma- tter on tetracycline bioavailability to an antibiotic-resistant bacter-ium[J]. Environmental Science & Technology, 2015, 49(18):10903-10910. [41] Wang Z, Sun Y, Wang D, et al.In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation[J]. International Journal of Nanomedicine, 2013, 8:2903. |