[1] Rai R, Keshavarz T, Roether JA, et al.Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future[J]. Materials Science and Engineering:R:Reports, 2011, 72(3):29-47. [2] Li R, Chen Q, Wang PG, et al.A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture[J]. Applied Microbiology and Biotechnology, 2007, 75(5):1103-1109. [3] Satoh Y, Murakami F, Tajima K, et al.Enzymatic synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)with CoA recycling using polyhydroxy-alkanoate synthase and acyl-CoA synthetase[J]. Journal of Bioscience and Bioengineering, 2005, 99(5):508-511. [4] Dias JML, Lemos PC, Serafim LS, et al.Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures:from the substrate to the final product[J]. Macromolecular Bioscience, 2006, 6(11):885-906. [5] Pbs A, Malafaia CB.Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates[J]. Internatonal Journal of Biological Macromolecules, 2017, 107(Pt A):615-625. [6] Meng DC, Chen R, Yao H, et al.Engineering the diversity of polyesters[J]. Current Opinion in Biotechnologe, 2014, 29:24-33. [7] Chen GQ.A microbial polydroxyalkanoates(PHA)based bio-and materials industry[J]. Chemical Society Reviews, 2009, 38(8):2434-2446. [8] Chung AL, Jin HL, Huang LJ, et al.Biosynthesis and characterization of poly(3-hydroxydodecanoate)by β-Oxidation inhibited mutant of Pseudomonas entomophila L48[J]. Biomacromolecules, 2011, 12(10):3559-3566. [9] Tripathi L, Wu LP, Dechuan M, et al.Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions[J]. Bioresource Technology, 2013, 142:225-231. [10] Raza ZA, Abids, Banat IM.Polyhydroxyalkanoates:characteristics, production, recent developments and applications[J]. Internatonal Biodeterioration &Biodegradation, 2018, 126:45-56. [11] Yin J, Chen JC, Wu Q, et al.Halophiles, coming stars for industrial biotechnology[J]. Biotechnology Advances, 2015, 33(7):1433-1442. [12] Yin W, Jin Y, Chen GQ.Polyhydroxyalkanoates, challenges and opportunities[J]. Current Opinion in Biotechnology, 2014(30):59-65. [13] Bhattacharyya A, Saha J, Haldar S, Bhowmic A, et al.Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate)by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts[J]. Extremophiles, 2014, 18(2):463-470. [14] Mahansaria R, Choudhury JD, Mukherjee J.Polymerase chain reaction-based screening method applicable universally to environmental haloarchaea and halobacteria for identifying polyhydroxyalkanoate producers among them[J]. Extremophiles, 2015, 19(5):1041-1054. [15] Quillaguamán J, Guzmán H, Van-Thuoc D, et al.Synthesis and production of polyhydroxyalkanoates by halophiles:current potential and future prospects[J]. Applied Microbiology and Biotechnology, 2010, 85(6):1687-1696. [16] Setati EM.Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria[J]. African Journal of Biotechnology, 2010, 9(11):1555-1560. [17] Quillaguamán J, Delgado O, Mattiasson B, et al.Poly(beta-hydroxybutyrate)production by a moderate halophile, Halomonas boliviensis LC1[J]. Enzyme and Microbial Technology, 2006, 38(1-2):148-154. [18] Oren A.Microbial life at high salt concentrations:phylogenetic and metabolic diversity[J]. Saline Systems, 2008, 4(2):1-13. [19] Cervantes-Uc JM, Catzin J, Vargas, et al. Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreduces, isolated from hypersaline ponds[J]. Journal of Applied Microbiology, 2014(117):1056-1065. [20] Kucera D, Pernicová I, Kovalcik A, et al.Characterization of the promising poly(3-hydroxybutyrate)producing halophilic bacterium Halomonas halophila[J]. Bioresource Technology, 2018(256):552-556. [21] Mahansaria R, Dhara A, Saha A, et al.Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis(as synonym)equivalent to Natrinema altunense strain RM-G10[J]. International Journal of Biological Macromolecules, 2018(107):1480-1490. [22] Tan D, Wu Q, Chen JC, et al.Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J]. Metabolic Engineering, 2014(26):34-47. [23] Tao W, Lv L, Chen GQ.Engineering Halomonas species TD01 for enhanced polyhydrosyalkanoates synthesis via CRISPRi[J]. Microbial Cell Factories, 2017, 16(48):1-10. [24] Yue HT, Ling C, Yang T, et al.A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates[J]. Biotechnology for Biofuels, 2014, 7(108):1-12. [25] Fu XZ, Tan D, Aibaidula G, et al.Development of Halomonas TD01 as a host for open production of chemicals[J]. Metabolic Engineering, 2014(23):78-91. [26] Chen XB, Yin J, Ye JW, et al.Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[J]. Bioresource Technology, 2017(244):534-541. [27] Argandoña M, Vargas C, Reina-Bueno M, et al.An extended suite of genetic tools for use in bacteria of the Halomonadaceae:an overview[M]//Balbás P, Lorence A. Recombinant gene expression. New Jersey:Human Press, 2012:167-201. [28] 刘会强, 张立丰, 韩彬, 等. 嗜盐菌的研究新进展[J]. 新疆师范大学学报:自然科学版, 2005, 24(3):84-88. [29] 王海飙, 刘长莉, 刘润泽, 等. 一株产聚-β-羟基脂肪酸酯嗜盐菌的筛选与鉴定[J]. 东北林业大学学报, 2016, 44(5):97-100, 107. [30] Zou YJ, Yang LF, Wang L, et al.Cloning and characterization of a Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus aidingensis AD-6T[J]. The Journal of Microbiology, 2008, 46(4):415-421. [31] Koller M, Maršálek L, Dias MMS, et al.Producing microbial polyhydroxyalkanoate(PHA)biopolyesters in a sustainable manner[J]. New Biotechnology, 2017(37):24-38. [32] Rodríguez-Contreras A, Koller M, Braunegg G, et al.Poly[(R)-3-hydroxybutyrate]production under different salinity conditions by a novel Bacillus megaterium strain[J]. New Biotechnology, 2016(33):73-77. [33] Obruca S, Benesova P, Kucera D, et al.Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids[J]. New Biotechnology, 2015(32):569-574. [34] Jönsson LJ, Martín C.Pretreatment of lignocellulose:Formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016(199):103-112. |