生物技术通报 ›› 2015, Vol. 31 ›› Issue (8): 9-16.doi: 10.13560/j.cnki.biotech.bull.1985.2015.08.002
赵国淼, 曾燕如, 徐亚楠, 贾宁, 唐研耀
收稿日期:
2014-10-04
出版日期:
2015-08-21
发布日期:
2015-08-22
作者简介:
赵国淼,男,硕士,研究方向:经济林培育与利用;E-mail:guomiaozhao@163.com
基金资助:
Zhao Guomiao, Zeng Yanru, Xu Ya’nan, Jia Ning, Tang Yanyao
Received:
2014-10-04
Published:
2015-08-21
Online:
2015-08-22
摘要: 植物种子是人们日常生活所需油脂的重要来源。近年来研究者对植物种子的研究阐明了油脂合成的机理,并挖掘了一些调控合成途径的关键酶和基因。在前人研究的基础之上,补充了成油途径、成油相关基因、转录调控等方面的进展,并从碳源供应、转运及胚乳的影响等方面概述了它们可能对植物油脂形成的影响。
赵国淼, 曾燕如, 徐亚楠, 贾宁, 唐研耀. 植物油脂合成调控的研究进展[J]. 生物技术通报, 2015, 31(8): 9-16.
Zhao Guomiao, Zeng Yanru, Xu Ya’nan, Jia Ning, Tang Yanyao. Research Progress on Regulation of Oil Synthesis in Plants[J]. Biotechnology Bulletin, 2015, 31(8): 9-16.
[1] Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants[J]. Journal of Biological Chemistry, 2012, 287(4):2288-2294. [2] Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels[J]. The Plant Journal, 2008, 54(4):593-607. [3] Baud S, Lepiniec L. Compared analysis of the regulatory systems controlling lipogenesis in hepatocytes of mice and in maturing oilseeds of Arabidopsis[J]. Comptes Rendus Biologies, 2008, 331(10):737-745. [4] 周丹, 赵江哲, 柏杨, 等. 植物油脂合成代谢及调控的研究进展[J]. 南京农业大学学报, 2012, 5:77-86. [5] Ohlrogge JB. Design of new plant products:engineering of fatty acid metabolism[J]. Plant Physiology, 1994, 104(3):821. [6] Bates PD, Durrett TP, Ohlrogge JB, et al. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos[J]. Plant Physiology, 2009, 150(1):55-72. [7] Bates PD, Johnson SR, Cao X, et al. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly[J]. Proceedings of the National Academy of Sciences USA, 2014, 111(3):1204-1209. [8] Bourgis F, Kilaru A, Cao X, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences USA, 2011, 108(30):12527-12532. [9] Mekhedov S, de Ilárduya OM, Ohlrogge J. Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis[J]. Plant Physiology, 2000, 122(2):389-402. [10] Hills MJ. Control of storage-product synthesis in seeds[J]. Current Opinion in Plant Biology, 2004, 7(3):302-308. [11] White JA, Todd J, Newman T, et al. A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil[J]. Plant Physiology, 2000, 124(4):1582-1594. [12] Bonaventure G, Ohlrogge JB. Differential regulation of mRNA levels of acyl carrier protein isoforms in Arabidopsis[J]. Plant Physiology, 2002, 128(1):223-235. [13] Troncoso-Ponce MA, Kilaru A, Cao X, et al. Comparative deep transcriptional profiling of four developing oilseeds[J]. The Plant Journal, 2011, 68(6):1014-1027. [14] Suh MC, Kim MJ, Hur CG, et al. Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds[J]. Plant Molecular Biology, 2003, 52(6):1107-1123. [15] O’Hara P, Slabas AR, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis[J]. Plant Physiology, 2002, 129(1):310-320. [16] Natarajan P, Parani M. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing[J]. BMC Genomics, 2011, 12(1):191. [17] Chen H, Wang FW, Dong YY, et al. Sequence mining and transcript profiling to explore differentially expressed genes associated with lipid biosynthesis during soybean seed development[J]. BMC Plant Biology, 2012, 12(1):122. [18] Song QX, Li QT, Liu YF, et al. Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants[J]. Journal of Experimental Botany, 2013:ert238. [19] Wang L, Yu S, Tong C, et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis[J]. Genome Biology, 2014, 15(2):R39. [20] 黄银芝, 曾燕如, 周秦, 等. 山核桃种子脂肪代谢期EST序列的初步分析[J]. 浙江农林大学学报, 2015, 32(2):229-236. [21] 徐莉, 杨江科, 刘云, 闫云君. 基于核糖体基因序列快速鉴定产脂肪酶微生物[J]. 生物技术通报, 2009(8):144-150. [22] 李运涛, 付春华, 栗茂腾, 余龙江. 三角褐指藻Δ6脂肪酸延长酶基因的克隆与序列分析[J]. 生物技术通报, 2009(10):120-123. [23] 连英丽, 蓝东明, 杨博, 王永华. 寄生曲霉脂肪酶的全基因合成、原核表达及其结构分析[J]. 生物技术通报, 2011(7):160-166. [24] Guo L, Ma F, Wei F, et al. Cytosolic phosphorylating glyceraldehy-de-3-phosphate dehydrogenases affect Arabidopsis cellular metabo-lism and promote seed oil accumulation[J]. Plant Cell, 2014, 26(7):3023-3035. [25] Koo AJ, Fulda M, Browse J, et al. Identification of a plastid acyl-acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids[J]. The Plant Journal, 2005, 44(4):620-632. [26] 徐宸敏, 邱旭, 刘小烛. 蓖麻GPAT基因SNPs及与油脂含量的关联分析[J]. 绵阳师范学院学报, 2012, 5:64-67. [27] Zhang M, Fan J, Taylor DC, et al. DGAT1 and PDAT1 acyltransfe-rases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development[J]. Plant Cell, 2009, 21(12):3885-3901. [28] Mhaske V, Beldjilali K, Ohlrogge J, et al. Isolation and characteri-zation of an Arabidopsis thaliana knockout line for phospholipid:diacylglycerol transacylase gene(At5g13640)[J]. Plant Physiology and Biochemistry, 2005, 43(4):413-417. [29] Milcamps A, Tumaney AW, Paddock T, et al. Isolation of a gene encoding a 1, 2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus[J]. Journal of Biological Chemistry, 2005, 280(7):5370-5377. [30] Shen Q, Han H, Qin X, et al. Important roles of transcription factors in regulating seed oil biosynthesis to increase plant storage lipid content[J]. Agricultural Science & Technology, 2013, 14(1):30-34. [31] Ramli U, Baker D, Quant P, et al. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly[J]. Biochem J, 2002, 364:393-401. [32] Ohlrogge JB, Jaworski JG. Regulation of fatty acid synthesis[J]. Annual Review of Plant Biology, 1997, 48(1):109-136. [33] Millar AA, Smith MA, Kunst L. All fatty acids are not equal:discrimination in plant membrane lipids[J]. Trends in Plant Science, 2000, 5(3):95-101. [34] Ruuska SA, Girke T, Benning C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. Plant Cell, 2002, 14(6):1191-1206. [35] Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis[J]. Plant Physiology and Biochemistry, 2009, 47(6):448-455. [36] Lotan T, Ohto M, Yee KM, et al. Arabidopsi LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells[J]. Cell, 1998, 93(7):1195-1205. [37] Mu J, Tan H, Zheng Q, et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148(2):1042-1054. [38] Focks N, Benning C. wrinkled1:a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiology, 1998, 118(1):91-101. [39] Shen B, Allen WB, Zheng P, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology, 2010, 153(3):980-987. [40] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis[J]. The Plant Journal, 2004, 40(4):575-585. [41] Cernac A, Andre C, Hoffmann-Benning S, et al. WRI1 is required for seed germination and seedling establishment[J]. Plant Physiology, 2006, 141(2):745-757. [42] Liu J, Hua W, Zhan G, et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus[J]. Plant Physiology and Biochemistry, 2010, 48(1):9-15. [43] 柴国华, 白泽涛, 蔡丽, 等 油菜基因BnWRI1的克隆及RNAi对种子含油量的影响[J]. 中国农业科学, 2009, 5:1512-1518. [44] Baud S, Mendoza MS, To A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. The Plant Journal, 2007, 50(5):825-838. [45] Baud S, Wuillème S, To A, et al. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis[J]. The Plant Journal, 2009, 60(6):933-947. [46] 黄胜和, 丁永红, 李东明, 等. 植物含油量相关转录因子WRINKLED1的研究进展[J]. 生命科学, 2012, 3:262-265. [47] Wang H, Guo J, Lambert KN, et al. Developmental control of Arabidopsis seed oil biosynthesis[J]. Planta, 2007, 226(3):773-783. [48] Goffman FD, Ruckle M, Ohlrogge J, et al. Carbon dioxide concentrations are very high in developing oilseeds[J]. Plant Physiology and Biochemistry, 2004, 42(9):703-708. [49] Fan J, Yan C, Andre C, et al. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii[J]. Plant and Cell Physiology, 2012, 53(8):1380-1390. [50] Ruuska SA, Schwender J, Ohlrogge JB. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes[J]. Plant Physiology, 2004, 136(1):2700-2709. [51] Goffman FD, Alonso AP, Schwender J, et al. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed[J]. Plant Physiology, 2005, 138(4):2269-2279. [52] Allen DK, Ohlrogge JB, Shachar-Hill Y. The role of light in soybean seed filling metabolism[J]. The Plant Journal, 2009, 58(2):220-234. [53] Alonso AP, Goffman FD, Ohlrogge JB, et al. Carbon conversion efficiency and central metabolic fluxes in developing sunflower(Helianthus annuus L. )embryos[J]. The Plant Journal, 2007, 52(2):296-308. [54] Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production[J]. Progress in Lipid Research, 2010, 49(3):235-249. [55] Nikolau BJ, Ohlrogge JB, Wurtele ES. Plant biotin-containing carboxylases[J]. Archives of Biochemistry and Biophysics, 2003, 414(2):211-222. [56] Klaus D, Ohlrogge JB, Neuhaus HE, et al. Increased fatty acid pro-duction in potato by engineering of acetyl-CoA carboxylase[J]. Planta, 2004, 219(3):389-396. [57] Roesler K, Shintani D, Savage L, et al. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds[J]. Plant Physiology, 1997, 113(1):75-81. [58] Schwender J, Ohlrogge JB, Shachar-Hill Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos[J]. Journal of Biological Chemistry, 2003, 278(32):29442-29453. [59] Bafor M, Jonsson L, Stobart AK, et al. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata[J]. Biochem J, 1990, 272:31-38. [60] Bao X, Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos[J]. Plant Physiology, 1999, 120(4):1057-1062. [61] Lardizabal K, Effertz R, Levering C, et al. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean[J]. Plant Physiology, 2008, 148(1):89-96. [62] Taylor DC, Zhang Y, Kumar A, et al. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions[J]. Botany, 2009, 87(6):533-543. [63] Lu J, Zhang C, Baulcombe DC, et al. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds[J]. Proceedings of the National Academy of Sciences USA, 2012, 109(14):5529-5534. [64] Huh JH, Bauer MJ, Hsieh TF, et al. Endosperm gene imprinting and seed development[J]. Current Opinion in Genetics & Development, 2007, 17(6):480-485. [65] Reik W, Dean W. DNA methylation and mammalian epigenetics [J]. Electrophoresis, 2001, 22(14):2838-2843. [66] Constância M, Kelsey G, Reik W. Resourceful imprinting[J]. Nature, 2004, 432(7013):53-57. [67] Gregg C, Zhang J, Weissbourd B, et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain[J]. Science, 2010, 329(5992):643-648. [68] Berger F, Chaudhury A. Parental memories shape seeds[J]. Trends in Plant Science, 2009, 14(10):550-556. [69] Hsieh TF, Shin J, Uzawa R, et al. Regulation of imprinted gene expression in Arabidopsis endosperm[J]. Proceedings of the National Academy of Sciences USA, 2011, 108(5):1755-1762. [70] Schilmiller AL, Koo AJK, Howe GA. Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action[J]. Plant Physiology, 2007, 143(2):812-824. [71] Durrett TP, McClosky DD, Tumaney AW, et al. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds[J]. Proceedings of the National Academy of Sciences USA, 2010, 107(20):9464-9469. [72] Weber H, Borisjuk L, Heim U, et al. Seed coat-associated invertases of fava bean control both unloading and storage functions:cloning of cDNAs and cell type-specific expression[J]. Plant Cell, 1995, 7(11):1835-1846. [73] Yang Y, Yu X, Song L, et al. ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency[J]. Plant Physiology, 2011, 156(2):873-883. [74] D’Hooghe P, Dubousset L, Gallardo K, et al. Evidence for proteomic and metabolic adaptations associated to alterations of seed yield and quality in sulphur-limited Brassica napus L[J]. Molecular & Cellular Proteomics, 2014:mcp. M113. 034215. [75] 孙远, 刘文彬, 周铁柱, 等. Fe 3+ 对小球藻的生长及油脂含量的影响[J]. 生物技术通报, 2014(4):181-186. [76] 蒋汉明, 高坤山. 氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响[J]. 水生生物学报, 2004, 5:545-551. [77] 陈锦清, 郎春秀, 胡张华, 等. 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J]. 农业生物技术学报, 1999, 4:316-320. [78] 陈锦清, 郎春秀, 黄瑞之, 等. 底物竞争调控籽粒蛋白质/油脂含量比率[R]. 北京:植物基因工程创新与生物安全国际研讨会. 科技部中国农村技术开发中心, 农业部科技发展中心, 2000. |
[1] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[4] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[5] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[6] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[7] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[8] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[9] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[10] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[11] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[12] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[13] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[14] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[15] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||