生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 116-126.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0232
吴学玲1,2(), 周翔宇1, 吴晓燕1, 罗奎1, 顾怡超1, 周晗1, 廖婉晴1, 曾伟民1,2()
收稿日期:
2020-03-06
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
吴学玲,女,博士,研究方向:环境微生物学;E-mail: 基金资助:
WU Xue-ling1,2(), ZHOU Xiang-yu1, WU Xiao-yan1, LUO Kui1, GU Yi-chao1, ZHOU Han1, LIAO Wan-qing1, ZENG Wei-min1,2()
Received:
2020-03-06
Published:
2020-10-26
Online:
2020-11-02
摘要:
含四环素废水在环境中广泛存在,由于其会造成抗性基因传播及人体耐药性等问题而备受关注。通过比较菌株对四环素的生物降解性能,明确地构建了以菌株Raoultella sp. XY-1及Pandoraea sp. XY-2为主体的共培养系统,并将该系统引入实际废水进行生物修复,观测污染物去除效率及群落变化。结果显示在含80 mg/L四环素的葡萄糖培养基中,共培养微生物10 d降解率达到80%以上。共培养微生物对真实四环素废水污染物去除效果良好,且高通量测序结果显示菌株Raoultella sp. XY-1成为优势菌。
吴学玲, 周翔宇, 吴晓燕, 罗奎, 顾怡超, 周晗, 廖婉晴, 曾伟民. 四环素降解菌共培养体系构建及废水修复的群落分析[J]. 生物技术通报, 2020, 36(10): 116-126.
WU Xue-ling, ZHOU Xiang-yu, WU Xiao-yan, LUO Kui, GU Yi-chao, ZHOU Han, LIAO Wan-qing, ZENG Wei-min. Construction of Tetracycline-degrading Bacterial Co-culture System and Community Analysis of Wastewater Remediation[J]. Biotechnology Bulletin, 2020, 36(10): 116-126.
添加浓度/ (mg?L-1) | 回收率/100% | ${x}^{-}±SD \%$ | CV/100% | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
10 | 87.01 | 88.23 | 89.06 | 88.14±0.84 | 0.95 |
40 | 86.04 | 87.68 | 89.52 | 87.75±1.42 | 1.61 |
表1 四环素回收率情况
添加浓度/ (mg?L-1) | 回收率/100% | ${x}^{-}±SD \%$ | CV/100% | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
10 | 87.01 | 88.23 | 89.06 | 88.14±0.84 | 0.95 |
40 | 86.04 | 87.68 | 89.52 | 87.75±1.42 | 1.61 |
样本 | 对照组 | Raoultella sp. XY-1 | Pandoraea sp. XY-2 | 共培养系统 | 时间/d | 显著性 |
---|---|---|---|---|---|---|
四环素浓度 | 80.83±1.05a | 80.38±0.55a | 81.77±1.59a | 79.77±0.70a | 0 | 0.112 |
65.90±0.74a | 19.1±0.07c | 28.94±0.32b | 13.91±0.08d | 12 | 1.000 |
表2 不同时间样本显著差异分析
样本 | 对照组 | Raoultella sp. XY-1 | Pandoraea sp. XY-2 | 共培养系统 | 时间/d | 显著性 |
---|---|---|---|---|---|---|
四环素浓度 | 80.83±1.05a | 80.38±0.55a | 81.77±1.59a | 79.77±0.70a | 0 | 0.112 |
65.90±0.74a | 19.1±0.07c | 28.94±0.32b | 13.91±0.08d | 12 | 1.000 |
检测项目 | 空白 | 对照组 | 实验组 | 检测项目 | 空白 | 对照组 | 实验组 | |
---|---|---|---|---|---|---|---|---|
四环素浓度 | 3.34278 | 2.23645 | 1.03205 | pH | 6.82 | 7.04 | 8.31 | |
CODCr | 462.16 | 386.56 | 224.65 | NH4+-N | 3.92 | 3.66 | 2.03 | |
总氮 | 27.45 | 23.22 | 12.33 | NO3--N | 18.32 | 12.64 | 4.96 | |
Ag | <0.001 | <0.001 | <0.001 | As | 0.031 | 0.011 | <0.005 | |
Cd | 0.006 | 0.002 | <0.001 | Co | 0.015 | 0.004 | <0.001 | |
Cr | 0.013 | 0.009 | <0.002 | Cu | 0.311 | 0.201 | 0.152 | |
Fe | 0.587 | 0.392 | <0.005 | Hg | 0.007 | 0.003 | 0.003 | |
Mn | <0.001 | <0.001 | <0.001 | Ni | 0.015 | 0.006 | 0.003 | |
Pb | <0.009 | <0.009 | <0.009 | Zn | 0.321 | 0.154 | <0.001 |
表3 生物修复中理化参数变化情况
检测项目 | 空白 | 对照组 | 实验组 | 检测项目 | 空白 | 对照组 | 实验组 | |
---|---|---|---|---|---|---|---|---|
四环素浓度 | 3.34278 | 2.23645 | 1.03205 | pH | 6.82 | 7.04 | 8.31 | |
CODCr | 462.16 | 386.56 | 224.65 | NH4+-N | 3.92 | 3.66 | 2.03 | |
总氮 | 27.45 | 23.22 | 12.33 | NO3--N | 18.32 | 12.64 | 4.96 | |
Ag | <0.001 | <0.001 | <0.001 | As | 0.031 | 0.011 | <0.005 | |
Cd | 0.006 | 0.002 | <0.001 | Co | 0.015 | 0.004 | <0.001 | |
Cr | 0.013 | 0.009 | <0.002 | Cu | 0.311 | 0.201 | 0.152 | |
Fe | 0.587 | 0.392 | <0.005 | Hg | 0.007 | 0.003 | 0.003 | |
Mn | <0.001 | <0.001 | <0.001 | Ni | 0.015 | 0.006 | 0.003 | |
Pb | <0.009 | <0.009 | <0.009 | Zn | 0.321 | 0.154 | <0.001 |
图4 对照组(A)实验组(B)与修复后的实验组与对照组(C)组内显著差异菌属 Y轴表示属水平下的物种名,物种对应的每个柱子表示该物种在各样本相对丰度,不同颜色表示不同的样本来源;中间区域为所设定的置信区间内,圆点对应的数值表示物种在两样本中相对丰度的差值,圆点颜色显示为物种丰度占比较大的样本颜色;图中最右边为P值,* 0.01 < P ≤ 0.05,** 0.001 < P ≤ 0.01,*** P ≤ 0.001
[1] | 闫琦, 刘培培, 张娇娇, 等. 畜禽粪便中残留四环素类抗生素的研究概况[J]. 家畜生态学报, 2018,39(5):80-86. |
Yan Q, Liu P, Zhang J, et al. Research survey of tetracyclines in animal manure[J]. Acta Ecologae Animalis Domastici, 2018,39(5):80-86. | |
[2] |
Halling-Sørensen B. Algal toxicity of antibacterial agents used in intensive farming[J]. Chemosphere, 2000,40(7):731-739.
doi: 10.1016/s0045-6535(99)00445-2 URL pmid: 10705551 |
[3] |
Jjemba PK. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006,63(1):113-130.
URL pmid: 16399163 |
[4] | Chen L, Li H, Liu Y, et al. Distribution, residue level, sources, and phase partition of antibiotics in surface sediments from the inland river:a case study of the Xiangjiang River, south-central China[J]. Environmental Science and Pollution Research, 2020(27):2273-2286. |
[5] |
Wang G, Zhou S, Han X, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China[J]. Journal of Hazardous Materials, 2020,389:122110.
URL pmid: 31978820 |
[6] | Selvam A, Kwok K, Chen Y, et al. Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong[J]. Environmental Science and Pollution Research, 2017,10(24):9058-9066. |
[7] | Xueling W, Yichao G, Xiaoyan W, et al. Construction of a tetracycline degrading bacterial consortium and its application evaluation in laboratory-scale soil remediation[J]. Microorganisms, 2020,2(8):292. |
[8] |
Leng Y, Bao J, Song D, et al. Background nutrients affect the biotransformation of tetracycline by Stenotrophomonas maltophilia as revealed by genomics and proteomics[J]. Environment Science & Technology, 2017,51(18):10476-10484.
doi: 10.1021/acs.est.7b02579 URL |
[9] |
Shao S, Hu Y, Cheng J, et al. Biodegradation mechanism of tetracycline(TEC)by strain Klebsiella sp. SQY5 as revealed through products analysis and genomics[J]. Ecotoxicology and Environmental Safety, 2019,185:109676.
doi: 10.1016/j.ecoenv.2019.109676 URL pmid: 31539769 |
[10] | 苏宏南, 陈切希, 赵甲元, 等. 微生物共培养降解β-氯氰菊酯的适宜条件[J]. 食品与发酵工业, 2018,44(7):8-12. |
Su H, Chen X, Zhao J, et al. Appropriate conditions of β-cypermethrin degradation by a co-culture of microorganism[J]. Food and Fermentation Industries, 2018,44(7):8-12. | |
[11] |
Li B, Zhang T, Yang Z. Immobilizing unicellular microalga on pellet-forming filamentous fungus:Can this provide new insights into the remediation of arsenic from contaminated water?[J]. Bioresource Technology, 2019,284:231-239.
doi: 10.1016/j.biortech.2019.03.128 URL pmid: 30947137 |
[12] |
Seo H, Kim J, Jung J, et al. Complexity of cell-cell interactions between Pseudomonas sp. AS1 and Acinetobacter oleivorans DR1:metabolic commensalism, biofilm formation and quorum quenching[J]. Research in Microbiology, 2012,163(3):173-181.
URL pmid: 22202171 |
[13] | Milaković M, Vestergaard G, González-Plaza JJ, et al. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments[J]. Science of the Total Environment, 2020,706:136001. |
[14] | Liu H, Song C, Zhao S, et al. Biochar-induced migration of tetracycline and the alteration of microbial community in agricultural soils[J]. Science of the Total Environment, 2020,706:136086. |
[15] |
Peng X, Cao J, Xie B, et al. Evaluation of degradation behavior over tetracycline hydrochloride by microbial electrochemical technology:Performance, kinetics, and microbial communities[J]. Ecotoxicology and Environmental Safety, 2020,188:109869.
URL pmid: 31683047 |
[16] | 吴学玲, 吴晓燕, 李交昆, 等. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报, 2018,34(5):172-178. |
Wu XL, Wu XY, Li JK, et al. Isolation and degradation characteri-stics of a efficient tetracycline- degrading strain[J]. Biotechnol-ogy Bulletin, 2018,34(5):172-178. | |
[17] |
Wu X, Wu X, Shen L, et al. Whole Genome sequencing and comparative genomics analyses of Pandoraea sp. XY-2, a new species capable of biodegrade tetracycline[J]. Frontiers in Microbiology, 2019,10:33.
URL pmid: 30761094 |
[18] |
Qi M, Huang H, Zhang Y, et al. Novel tetrahydrofuran(THF)degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic[J]. Chemosphere, 2019,231:173-183.
URL pmid: 31129398 |
[19] | Liu D, Yan X, Si M, et al. Bioconversion of lignin into bioplastics by Pandoraea sp. B-6:molecular mechanism[J]. Environmental Science and Pollution Research, 2019,26(3):2716-2770. |
[20] |
Yang J, Guo C, Liu S, et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil[J]. Environmental Science and Pollution Research, 2018,25(18):17645-17653.
URL pmid: 29667057 |
[21] |
Zhang X, Hao X, Huo S, et al. Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant[J]. Archives of Microbiology, 2019,201(9):1207-1217.
URL pmid: 31190085 |
[22] |
Smulek W, Cybulski Z, Guzik U, et al. Three chlorotoluene-degrading bacterial strains:Differences in biodegradation potential and cell surface properties[J]. Chemosphere, 2019,237:124452.
URL pmid: 31376699 |
[23] |
Adelowo OO, Fagade OE. The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria[J]. Letters in applied Microbiology, 2009,48(2):167-172.
URL pmid: 19196439 |
[24] |
Leng Y, Bao J, Chang G, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of Hazardous Materials, 2016,318:125-133.
doi: 10.1016/j.jhazmat.2016.06.053 URL pmid: 27420384 |
[25] |
Li Y, Li Y, Zhao J, et al. Long-term alkaline conditions inhibit the relative abundances of tetracycline resistance genes in saline 4-chlorophenol wastewater treatment[J]. Bioresource Technology, 2020,301:122792.
URL pmid: 31978699 |
[26] | Shen L, Li Z, Wang J, et al. Characterization of extracellular polysaccharide protein contents during the adsorption of Cd(II)by Synechocystis sp. PCC6803[J]. Environment Science and Pollution Research, 2018,25(21):20713-20722. |
[27] | Qiao M, Chen W, Su J, et al. Fate of tetracyclines in swine manure of three selected swine farms in China[J]. Journal of Environment Science, 2012,24(6):1047-1052. |
[28] |
Wang Q, Li X, Yang Q, et al. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria[J]. Ecotoxicology and Environmental Safety, 2019,171:746-752.
doi: 10.1016/j.ecoenv.2019.01.047 URL pmid: 30660087 |
[29] | Awasthi MK, Duan Y, Awasthi SK, et al. Emerging applications of biochar:Improving pig manure composting and attenuation of heavy metal mobility in mature compost[J]. Journal of Hazardous Materials, 2020,389:122116. |
[30] |
Chen J, Yang Y, Liu Y, et al. Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell[J]. Bioresource Technology, 2019,276:236-243.
URL pmid: 30640017 |
[31] |
Yuan K, Li S, Zhong F. Characterization of a newly isolated strain Comamonas sp. ZF-3 involved in typical organics degradation in coking wastewater[J]. Bioresource Technology, 2020,304:123035.
URL pmid: 32111454 |
[32] |
Xing W, Wang Y, Hao T, et al. pH control and microbial community analysis with HCl or CO2 addition in H2-based autotrophic denitrification[J]. Water Research, 2020,168:115200.
URL pmid: 31655440 |
[33] | Su J, Yang S, Huang T, et al. Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15[J]. Environmental Pollution, 2019,256:113294. |
[34] |
Barbara M, Alejandro R, Miguel H, et al. Performance and microbial community structure of an aerobic granular sludge system at different phenolic acid concentrations[J]. Journal of Hazardous Materials, 2019,376:58-67.
URL pmid: 31121453 |
[35] | Lu L, Wang B, Zhang Y, et al. Identification and nitrogen removal characteristics of Thauera sp. FDN-01 and application in sequencing batch biofilm reactor[J]. Science of the Total Environment, 2019,690:61-69. |
[36] | Zhang W, Yu C, Wang X, et al. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting[J]. Bioresource Technology, 2020,297:122410. |
[37] |
Huang Z, Wei Z, Xiao X, et al. Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous Hg0 and NO removal[J]. Bioresource Technology, 2019,274:18-24.
URL pmid: 30500759 |
[1] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[2] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[3] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[4] | 谢田朋, 柳娜, 刘越敏, 曲馨, 薄双琴, 景明. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91. |
[5] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[6] | 杨宗政, 赵晓宇, 刘丹, 许文帅, 吴志国. Microbacterium sp. BD6在Cr(VI)污染农田土壤修复中的应用研究[J]. 生物技术通报, 2021, 37(10): 81-90. |
[7] | 郭伟, 薛帅, 张哲超, 刁风伟, 胡杰, 张敏, 刘美淳, 丁胜利, 贾冰冰, 史中奇. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020, 36(7): 200-208. |
[8] | 岳丽晓, 李登云, 张晶晶, 仝雷. 一株敌草隆降解菌的分离及其应用潜能探索[J]. 生物技术通报, 2020, 36(6): 110-119. |
[9] | 林淼, 王阔鹏, 陈映良, 孙文婧, 封丽梅, 胡梓轩. 乙醇对瘤胃液接种稻秸的体外发酵产物及细菌群落结构的影响[J]. 生物技术通报, 2020, 36(2): 91-99. |
[10] | 王永妍, 赵炳赫, 梁广钰, 李云, 徐仰仓. 不同季节使用微生态制剂后养殖海水细菌群落特征[J]. 生物技术通报, 2020, 36(2): 126-133. |
[11] | 洪洁, 康建依, 刘一倩, 高秀芝, 易欣欣. 生菜连作及生菜-菠菜轮作对土壤细菌群落结构的影响[J]. 生物技术通报, 2019, 35(8): 17-26. |
[12] | 望子龙 ,罗学刚 ,司慧 ,王焯. 锰、砷对地衣芽孢杆菌铀富集的影响[J]. 生物技术通报, 2018, 34(6): 164-171. |
[13] | 张广志, 王加宁, 吴晓青, 周方园, 张新建, 赵晓燕, 谢雪迎, 周红姿. 设施番茄根围土样中木霉菌多样性及功能活性分析[J]. 生物技术通报, 2018, 34(4): 179-185. |
[14] | 华涛, 李胜男, 邸志珲, 周博, 曾文炉, 周启星, 李凤祥. 微生物降解石油污染物机制研究进展[J]. 生物技术通报, 2018, 34(10): 26-34. |
[15] | 殷继忠, 李亮, 接伟光, 蔡柏岩. 连作对大豆根际土壤细菌菌群结构的影响[J]. 生物技术通报, 2018, 34(1): 230-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||