生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 207-214.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0271
收稿日期:
2020-03-12
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
刘融,女,硕士研究生,研究方向:反刍动物生理营养;E-mail: 基金资助:
LIU Rong1,2(), CUI Kai2, BAI Fu-heng3, DIAO Qi-yu2()
Received:
2020-03-12
Published:
2020-10-26
Online:
2020-11-02
摘要:
蛋氨酸是畜禽必需的氨基酸,在机体中具有广泛而重要的生物学功能。近年来研究表明,限制饮食中的蛋氨酸(MetR)可产生许多生理效应,如延长寿命、预防代谢性疾病和参与调节炎症性疾病。作为评价机体健康水平的重要指标,氧化应激得到越来越多的关注。大量研究证实了MetR对机体氧化应激的正面效应,MetR可通过减少线粒体活性氧产生、调控关键信号通路以及改变miRNAs表达等方式参与氧化应激的调控,从而对畜禽健康产生广泛的影响。围绕MetR对畜禽氧化应激的影响,重点阐述了MetR与氧化应激相关的分子机制。
刘融, 崔凯, 白福恒, 刁其玉. 蛋氨酸调控畜禽氧化应激的研究进展[J]. 生物技术通报, 2020, 36(10): 207-214.
LIU Rong, CUI Kai, BAI Fu-heng, DIAO Qi-yu. Research Progress on Methionine Regulating the Oxidative Stress of Livestock and Poultry[J]. Biotechnology Bulletin, 2020, 36(10): 207-214.
动物、MetR量、处理时间 | 组织 | mtROS | 呼吸复合物浓度变化 | 自由基泄露 | 氧化损伤标记物 | 线粒体耗氧量 | 参考文献 |
---|---|---|---|---|---|---|---|
大鼠 80%MetR 6-7周 | 肝脏 | ↓ Ⅰ、Ⅲ中 | Ⅰ、Ⅳ ↓ | ↓ Ⅰ、Ⅲ中 | ↓ | ↑ | [ |
心脏 | ↓ Ⅰ中 | Ⅰ、Ⅳ ↓ | ↓ Ⅰ中 | ↓ | ↑ | ||
大鼠 40%MetR 6-7周 | 肝脏 | ↓ Ⅰ、Ⅲ中 | Ⅰ、Ⅱ、Ⅲ、Ⅳ ↓ | ↓ Ⅰ中 | ↓ | - | [ |
大鼠 80%MetR 6-7周 | 肝脏 | ↓ Ⅰ、Ⅲ中 | Ⅰ、Ⅱ、Ⅲ、Ⅳ ↓ | ↓ Ⅰ中 | ↓ | - | [ |
大鼠 40%MetR 6-7周 | 心脏 | ↓ Ⅰ中 | Ⅰ、Ⅱ、Ⅲ、Ⅳ - | U | ↓ | - | [ |
仔猪 30%MetR 2周 | 肝脏 | ↓ Ⅰ中 | Ⅰ ↓ | ↓ Ⅰ中 | ↓ | ↑ | [ |
虹鳟 56%MetR 6周 | 肝脏 | U | Ⅰ、Ⅱ、Ⅳ ↓ | U | ↓ | U | [ |
表1 MetR对动物线粒体氧化应激相关参数变化
动物、MetR量、处理时间 | 组织 | mtROS | 呼吸复合物浓度变化 | 自由基泄露 | 氧化损伤标记物 | 线粒体耗氧量 | 参考文献 |
---|---|---|---|---|---|---|---|
大鼠 80%MetR 6-7周 | 肝脏 | ↓ Ⅰ、Ⅲ中 | Ⅰ、Ⅳ ↓ | ↓ Ⅰ、Ⅲ中 | ↓ | ↑ | [ |
心脏 | ↓ Ⅰ中 | Ⅰ、Ⅳ ↓ | ↓ Ⅰ中 | ↓ | ↑ | ||
大鼠 40%MetR 6-7周 | 肝脏 | ↓ Ⅰ、Ⅲ中 | Ⅰ、Ⅱ、Ⅲ、Ⅳ ↓ | ↓ Ⅰ中 | ↓ | - | [ |
大鼠 80%MetR 6-7周 | 肝脏 | ↓ Ⅰ、Ⅲ中 | Ⅰ、Ⅱ、Ⅲ、Ⅳ ↓ | ↓ Ⅰ中 | ↓ | - | [ |
大鼠 40%MetR 6-7周 | 心脏 | ↓ Ⅰ中 | Ⅰ、Ⅱ、Ⅲ、Ⅳ - | U | ↓ | - | [ |
仔猪 30%MetR 2周 | 肝脏 | ↓ Ⅰ中 | Ⅰ ↓ | ↓ Ⅰ中 | ↓ | ↑ | [ |
虹鳟 56%MetR 6周 | 肝脏 | U | Ⅰ、Ⅱ、Ⅳ ↓ | U | ↓ | U | [ |
[1] | 徐少庭, 徐晨晨, 罗海玲. 饲粮抗氧化剂对肌肉嫩度的影响及作用机制[J]. 动物营养学报, 2017(8):2676-2680. |
Xu ST, Xu CC, Luo HL. Effects and mechanisms of dietary antioxidants on meat tenderness[J]. Chinese Journal of Animal Nutrition, 2017(8):2676-2680. | |
[2] |
Nagai M, Noguchi R, Takahashi D, et al. Fasting-refeeding impacts immune cell dynamics and mucosal immune responses[J]. Cell, 2019,178(5):1072-1087.
doi: 10.1016/j.cell.2019.07.047 URL pmid: 31442401 |
[3] |
Collins N, Han SJ, Enamorado M, et al. The bone marrow protects and optimizes immunological memory during dietary restriction[J]. Cell, 2019,178(5):1088-1101.
URL pmid: 31442402 |
[4] |
Jordan S, Tung N, Casanova-Acebes M, et al. Dietary intake regulates the circulating inflammatory monocyte pool[J]. Cell, 2019,178(5):1102-1114.
doi: 10.1016/j.cell.2019.07.050 URL pmid: 31442403 |
[5] |
Bazopoulou D, Knoefler D, Zheng Y, et al. Developmental ROS individualizes organismal stress resistance and lifespan[J]. Nature, 2019,576(7786):301-305.
URL pmid: 31801997 |
[6] | Sanz A, Caro P, Ayala V, et al. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins[J]. JASEB Journal, 2006,20(8):1064-1073. |
[7] | 李亮. 蛋氨酸对雉鸡的生长、肉质、抗氧化性及免疫功能的影响[D]. 长春:吉林大学, 2017. |
Li L. Effect of methionine on growth, meat quality, antioxidant properties and immune function of Phasianus colchicus[D]. Changchun:Jilin University, 2017. | |
[8] | 王雅楠, 张佳红, 郭海涛, 等. 蛋氨酸限制和胶原蛋白肽对高脂饮食小鼠脂代谢和氧化应激的联合作用[J]. 食品科学, 2018,39(9):108-115. |
Wang YN, Zhang JH, Guo HT, et al. Combined effect of methionine restriction and collagen peptides on lipid metabolism and oxidative stress in high-fat diet-fed mice[J]. Food Science, 2018,39(9):108-115. | |
[9] |
Dröge W. Free radicals in the physiological control of cell function[J]. Physiol Rev, 2002,82(1):47-95.
URL pmid: 11773609 |
[10] | 王秋林, 王浩毅, 王树人. 氧化应激状态的评价[J]. 中国病理生理杂志, 2005,21(10):2069-2074. |
Wang QL, Wang HY, Wang SR. Assessment of the state oxidative stress[J]. Chinese Journal of Pathophysiology, 2005,21(10):2069-2074. | |
[11] |
Lin AH, Chen HW, Liu CT, et al. Activation of Nrf2 is required for up-regulation of the πclass of glutathione s-transferase in rat primary hepatocytes with L-methionine starvation[J]. Journal of Agricultural and Food Chemistry, 2012,60(26):6537-6545.
doi: 10.1021/jf301567m URL pmid: 22676582 |
[12] |
Zhu LH, Zhao KL, Chen XL, et al. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs[J]. Journal of Animal Science, 2012,90(8):2581-2589.
doi: 10.2527/jas.2012-4444 URL pmid: 22896732 |
[13] | 温雅俐. 热应激对奶牛生产性能及生理机能的影响[D]. 呼和浩特:内蒙古农业大学, 2011. |
Wen YL. Effect of heat stress on performance and physiological functions in dairy cows[D]. Hohhot:Inner Mongolia Agricultural University, 2011. | |
[14] | 马燕芬, 杜瑞平, 高民. 热应激对奶山羊生产性能及瘤胃上皮细胞形态结构的影响[J]. 中国农业科学, 2013,46(21):4486-4495. |
Ma YF, Du RP, Gao M. Effect of heat stress on dairy goat performance and rumen epithelial cell morphology[J]. Scientia Agricultura Sinica, 2013,46(21):4486-4495. | |
[15] |
Martínez Y, Li X, Liu G, et al. The role of methionine on metabolism, oxidative stress, and diseases[J]. Amino Acids, 2017,49(12):2091-2098.
URL pmid: 28929442 |
[16] |
Yan S, Long L, Zong E, et al. Dietary sulfur amino acids affect jejunal cell proliferation and functions by affecting antioxidant capacity, Wnt/β-Catenin and the mechanistic target of rapamycin signaling pathways in weaning piglets[J]. Journal of Animal Science, 2018,96(12):5124-5133.
URL pmid: 30169651 |
[17] | 谢明, 侯水生, 刘福柱. 蛋氨酸毒性及其中毒机制的研究进展[J]. 饲料博览, 2002(4):14-15. |
Xie M, Hou SH, Liu FZ. Research Progress on toxicity and poisoning mechanism of methionine[J]. Feed Review, 2002(4):14-15. | |
[18] |
Pettit AP, Jonsson WO, Bargoud AR, et al. Dietary methionine restriction regulates liver protein synjournal and gene expression independently of eukaryotic initiation factor 2 phosphorylation in mice[J]. The Journal of Nutrition, 2017,147(6):1031-1040.
URL pmid: 28446632 |
[19] | 王杰. 蛋氨酸对羔羊生长发育及肝脏LncRNA基因表达调控的影响[D]. 北京:中国农业科学院, 2017. |
Wang J. Effect of dietary methionine on growth, development and hepatic Lnc RNA gene expression in lambs[D]. Beijing:Chinese Academy of Agricultural Sciences, 2017. | |
[20] |
Castellano R, Perruchot MH, Conde-Aguilera JA, et al. A methionine deficient diet enhances adipose tissue lipid metabolism and alters anti-oxidant pathways in young growing pigs[J]. PLoS One, 2015,10(7):e0130514
URL pmid: 26161654 |
[21] |
Chance B, et al. Hydroperoxide metabolism in mammalian organs.[J]. Physiological Reviews, 1979,59(3):527-605.
URL pmid: 37532 |
[22] | Sanchez-Roman I, et al. Regulation of longevity and oxidative stress by nutritional interventions:Role of methionine restriction[J]. Exp Gerontology, 2013,48(10):1030-1042. |
[23] | 刘树森. 线粒体呼吸链与活性氧[J]. 生命科学, 2008,20(4):519-527. |
Liu SS. Mitochondrial respiratory chain and reactive oxygen species[J]. Chinese Bulletin of Life Sciences, 2008,20(4):519-527. | |
[24] |
Caro P, Gómez J, López-Torres M, et al. Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver[J]. Biogerontology, 2008,9(3):183-196.
doi: 10.1007/s10522-008-9130-1 URL pmid: 18283555 |
[25] |
Sanchez-Roman I, Gomez A, Gomez J, et al. Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart[J]. Journal of Bioenergetics & Biomembranes, 2011,43(6):699-708.
doi: 10.1007/s10863-011-9389-9 URL pmid: 22006472 |
[26] |
Wu GY, Sun KJ, Yang Y, et al. Dietary l-methionine restriction decreases oxidative stress in porcine liver mitochondria[J]. Experimental Gerontology, 2015,65:35-41.
URL pmid: 25765145 |
[27] |
Séité S, Mourier A, Camougrand N, et al. Dietary methionine deficiency affects oxidative status, mitochondrial integrity and mitophagy in the liver of rainbow trout(Oncorhynchus mykiss)[J]. Scientific Reports, 2018,8(1):10151.
URL pmid: 29977029 |
[28] | Maddineni S, Nichenametla S, Sinha R, et al. Methionine restriction affects oxidative stress and glutathione-related redox pathways in the rat[J]. Exp Biol Med, 2013,238(4):392-399. |
[29] |
Rössler OG, Thiel G. Specificity of stress-responsive transcription factors Nrf2, ATF4 and AP-1[J]. Journal of Cellular Biochemistry, 2016,118(1):127-140.
URL pmid: 27278863 |
[30] |
Kamata H, Hirata H. Redox regulation of cellular signalling[J]. Cell Signal, 1999,11(1):1-14.
URL pmid: 10206339 |
[31] |
Tsai CW, Lin AH, Wang TS, et al. Methionine restriction up-regulates the expression of the pi class of glutathione S-transferase partially via the extracellular signal-regulated kinase-activator protein-1 signaling pathway initiated by glutathione depletion[J]. Molecular Nutrition & Food Research, 2010,54(6):841-850.
URL pmid: 20013880 |
[32] |
Tsai CW, Chen HW, Yang JJ, et al. Sulfu amino acid restriction induces the pi class of glutathione S-transferase expression in primary rat hepatocytes[J]. The Journal of Nutrition. 2005,135:1034-1039.
doi: 10.1093/jn/135.5.1034 URL pmid: 15867277 |
[33] |
Sujoy G, Forney LA, Desiree W, et al. An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice[J]. PLoS One, 2017,12(5):e0177513.
URL pmid: 28520765 |
[34] |
Ameri K, Harris AL. Activating transcription factor 4[J]. Int J Biochem Cell Biol, 2008,40(1):14-21.
URL pmid: 17466566 |
[35] |
Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation[J]. Trends Endocrinol Metab, 2009,20(9):436-443.
URL pmid: 19800252 |
[36] |
Gallinetti J, Harputlugil E, et al. Amino acid sensing in dietary-restriction-mediated longevity:roles of signal-transducing kinases GCN2 and TOR[J]. Biochem J, 2013,449(1):1-10.
URL pmid: 23216249 |
[37] |
Wanders D, Stone KP, Forney LA, et al. Role of GCN2-independent signaling through a noncanonical PERK/NRF2 pathway in the physiological responses to dietary methionine restriction[J]. Diabetes, 2016,65(6):1499-1510.
URL pmid: 26936965 |
[38] |
Chang L, Karin M. Mammalian MAP kinase signalling cascades[J]. Nature, 2001,410:37-40.
URL pmid: 11242034 |
[39] |
Lu SC. Regulation of glutathione synjournal[J]. Molecular Aspects of Medicine, 2009,30(1-2):42-59.
URL pmid: 18601945 |
[40] |
Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene[J]. PNAS, 1996,93(25):14960-14965.
doi: 10.1073/pnas.93.25.14960 URL pmid: 8962164 |
[41] |
Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes[J]. Oncogene, 1998,17(24):3145-3156.
doi: 10.1038/sj.onc.1202237 URL pmid: 9872330 |
[42] | He CH, Gong P, Hu B, et al. Identification of activating transcription factor 4(ATF4)as an Nrf2-interacting protein:Implication for heme oxygenase-1 gene regulation[J]. Journal of Biological Chemistry[J], 2001,276(24):20858-20865. |
[43] |
Engedal N, Žerovnik E, Rudov A, et al. From oxidative stress damage to pathways, networks, and autophagy via MicroRNAs[J]. Oxidative Medicine and Cellular Longevity, 2018. DOI: 10.1155/201814968321.eCo11ection 2018.
URL pmid: 33133345 |
[44] | Latimer M, Sabin N, Le Cam A, et al. MiR-210 expression is associated with methionine-induced differentiation of trout satellite cells[J]. J Exp Biol, 2017,220(16):154484. |
[45] |
Clarke JD, Sharapova T, Lake AD, et al. Circulating microRNA 122 in the methionine and choline-deficient mouse model of non-alcoholic steatohepatitis[J]. Journal of Applied Toxicology, 2014,34(6):726-732.
doi: 10.1002/jat.2960 URL pmid: 24217942 |
[46] |
Plummer J, Park M, Perodin F, et al. Methionine-restricted diet increases miRNAs that can target RUNX2 expression and alters bone structure in young mice[J]. Journal of Cellular Biochemistry, 2017,118(1):31-42.
URL pmid: 27191548 |
[47] |
Latimer MN, et al. Dietary methionine restriction:Effects on glucose tolerance, lipid content and micro-RNA composition in the muscle of rainbow trout[J]. Comp Biochem Physiol C:Toxicol & Pharmacol, 2018,208:47-52.
URL pmid: 29100953 |
[48] |
Leung AK, Sharp PA. MicroRNA functions in stress responses[J]. Molecular Cell, 2010,40(2):205-215.
URL pmid: 20965416 |
[1] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[2] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[3] | 张小妮, 翁伊纯, 范奕浩, 王晓娟, 赵佳宇, 张云龙. Mito-OS-Timer:一种靶向监测线粒体氧化应激的荧光秒表[J]. 生物技术通报, 2022, 38(10): 97-105. |
[4] | 彭文超, 刘建新, 王迪铭. 哺乳动物低氧应激代谢成因的研究进展[J]. 生物技术通报, 2021, 37(1): 262-271. |
[5] | 吕鹏, 徐嘉擎, 王森, 闫艳春. 杀菌剂苯并异噻唑啉酮对斑马鱼胚胎的急性毒性和氧化应激效应研究[J]. 生物技术通报, 2018, 34(1): 172-182. |
[6] | 饶磊, 饶敏, 仇红红, 李红辉, 刘静, 庄满娇. 纳米硒抗胰岛β细胞凋亡作用与机制的研究[J]. 生物技术通报, 2016, 32(11): 271-277. |
[7] | 覃玉娥, 刘朝奇. Nrf2及其相关抗氧化基因的miRNA调控研究进展[J]. 生物技术通报, 2013, 0(9): 34-37. |
[8] | 李铁松,高杨,王颖,李庆伟. 抗增殖蛋白与氧化应激[J]. 生物技术通报, 2013, 0(10): 34-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||