生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 215-225.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0136
收稿日期:
2020-02-15
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
汪金秀,女,硕士研究生,研究方向:微生物学;E-mail: 基金资助:
WANG Jin-xiu1,3(), ZHANG Qi2, DING Wei4(), CHEN Tuo1()
Received:
2020-02-15
Published:
2020-10-26
Online:
2020-11-02
摘要:
核糖体肽类天然产物(RiPPs)是由核糖体合成,经由翻译后修饰得到的一大类天然产物,具有广泛的结构和生物活性多样性。综述了核糖体肽的类别及种类众多的翻译后修饰机理,探讨了翻译后修饰对结构多样性的意义,并对生物信息学背景下利用基因组挖掘技术来开发更多RiPPs做了展望。
汪金秀, 张琪, 丁伟, 陈拓. 核糖体肽生物合成中的典型翻译后修饰研究[J]. 生物技术通报, 2020, 36(10): 215-225.
WANG Jin-xiu, ZHANG Qi, DING Wei, CHEN Tuo. Classic Post-translational Modification in Ribosomally Synthesized and Post-translationally Modified Peptides Biosynthesis[J]. Biotechnology Bulletin, 2020, 36(10): 215-225.
[1] |
Elizabeth M Nolan, Christopher T Walsh. How nature morphs peptide scaffolds into antibiotics[J]. Chembiochem, 2009,10(1):34-53.
URL pmid: 19058272 |
[2] |
Bartholomae M, Buivydas A, Viel JH, et al. Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide(RiPP)biosynjournal[J]. Molecular Microbiology, 2017,106(2):186-206.
URL pmid: 28787536 |
[3] |
Arnison PG, Bibb MJ, Bierbaum G, et al. Ribosomally synthesized and post-translationally modified peptide natural products:overview and recommendations for a universal nomenclature[J]. Natural Product Reports, 2013,30(1):108-160.
URL pmid: 23165928 |
[4] | Mahanta N, Luo SW, Dong SH. Recent advances in the discovery and biosynthetic study of eukaryotic RiPP natural products[J]. Molecules, 2019,24(8):1-15. |
[5] | Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides(RiPPs)in anaerobic bacteria[J]. BMC Genomics, 2014,15(1):983-988. |
[6] | John AM, Mohamed SD. Ribosomal peptide natural products bridging the ribosomal and nonribosomal worlds[J]. Natural Product Reports, 2009,26(4):1-54. |
[7] | Ross RP, Morgan S, Hill C. Preservation and fermentation:past, present and future[J]. International Journal of Food Microbiology, 2002,79(1):3-16. |
[8] |
Lin PF, Samanta H, Bechtold CM, et al. Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor[J]. Antimicrobial Agents and Chemotherapy, 1996,40(1):133-138.
URL pmid: 8787894 |
[9] |
Metlitskaya A, Kazakov T, Kommer A, et al. Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C[J]. Journal of Biological Chemistry, 2006,281(26):18033-18042.
URL pmid: 16574659 |
[10] | Knappe TA, Linne U, Zirah S, et al. Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264[J]. Journal of the American Chemical Society, 2008,130(34):446-454. |
[11] | Bonelli RR, Schneider T, Sahl HG, et al. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies[J]. Antimicrob Agents Chemother, 2006,50(4):49-57. |
[12] |
Geng MX, Austin F, Shin R, et al. Characterization of the covalent structure and bioactivity of the type AII lantibiotic salivaricin A2[J]. Appl Environ Microbiol, 2017,84(5):e02528-17.
URL pmid: 29269497 |
[13] |
Iwamoto M, Shimizu H, Muramatsu I, et al. A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial insertion into the membrane[J]. FEBS Letters, 2010,584(18):3995-3999.
URL pmid: 20699099 |
[14] |
Bierbaum G, Sahl HG. Lantibiotics:mode of action, biosynjournal and bioengineering[J]. Current Pharmaceutical Biotechnology, 2009,10(1):2-18.
URL pmid: 19149587 |
[15] | Breukink E, Kruijff BD. Lipid II as a target for antibiotics[J]. Nature Reviews Drug Discovery, 2006,5(4):321-332. |
[16] | Mahanta N, Dong SH, Liu AD. Mechanistic basis for ribosomal peptide backbone modifications[J]. ACS Central Science, 2019,5(1):842-851. |
[17] | Anne CL, Sacha JP, Christian H. Genome mining for ribosomally synthesized and post-translationally modified peptides(RiPPs)in anaerobic bacteria[J]. BMC Genomics, 2014,15(1):983. |
[18] | Repka Lindsay M, Chekan Jonathan R, Nair Satish K, et al. Mechanistic understanding of lanthipeptide biosynthetic enzymes[J]. Chemical Reviews, 2017,117(1):5457-5506. |
[19] | Goto Y, Li B, Claesen J, et al. Discovery of unique lanthionine syn-thetases reveals new mechanistic and evolutionary insights[J]. PLoS BioIogy, 2010,8(3):e1000339. |
[20] | Willey JM, Wa Van Der Donk. Lantibiotics:peptides of diverse structure and function[J]. Annual Review of Microbiology, 2007,61(1):477-501. |
[21] | Moore BS. Extending the biosynthetic repertoire in ribosomal peptide assembly[J]. Angewandte Chemie International Edition, 2009,40(6):9386-9388. |
[22] |
Walsh Christopher T, Nolan Elizabeth M. Morphing peptide backbones into heterocycles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(15):5655-5656.
URL pmid: 18398003 |
[23] |
Roy Ranabir S, Gehring Amy M, Milne Jill C, et al. Thiazole and oxazole peptides:biosynjournal and molecular machinery[J]. Natural Product Reports, 1999,16(2):249-263.
URL pmid: 10331285 |
[24] | Gesner AS, Carmeli S. Three novel metabolites from a bloom of the cyanobacterium Microcystis sp.[J]. Tetrahedron, 2008,64(28):6628-6634. |
[25] | Zamble DB, Miller DA, Heddle JG, et al. In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(14):12-17. |
[26] | Betty A Eipper. Posttranslational modification of proteins:expanding nature’s inventory[J]. Quarterly Review of Biology, 2008,4:403. |
[27] |
Okada M, Sato I, Cho SJ, et al. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX[J]. Nature Chemical Biology, 2005,1(1):23-24.
URL pmid: 16407988 |
[28] | Wipf P, Uto Y. Total synjournal and revision of stereochemistry of the marine metabolite trunkamide A[J]. Cheminform, 2010,31(22):1037-1049. |
[29] |
Leung KF, Baron R, Seabra MC. Thematic review series:lipid posttranslational modifications. geranylgeranylation of Rab GTPases[J]. Journal of Lipid Research, 2006,47(3):467-475.
doi: 10.1194/jlr.R500017-JLR200 URL pmid: 16401880 |
[30] | Alhosna B, Balty C, Berteau O. Radical SAM enzymes in the biosynjournal of ribosomally synthesized and post-translationally modified peptides(RiPPs)[J]. Frontiers in Chemistry, 2017,5(1):87-96. |
[31] |
Frey PA, Hegeman AD, Ruzicka FJ. The radical SAM superfamily[J]. Critical Reviews in Biochemistry & Molecular Biology, 2008,43(1):63-88.
URL pmid: 18307109 |
[32] | Flühe Leif, Marahiel Mohamed A. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynjournal[J]. Current Opinion in Chemical Biology, 2013,17(4):605-612. |
[33] |
Ding W, Li YZ, Zhang Q. Substrate-controlled stereochemistry in natural product biosynjournal[J]. ACS Chemical Biology, 2015,10(7):1590-1598.
URL pmid: 25844528 |
[34] | Bhandari DM, Fedoseyenko D, Begley TP. Mechanistic studies on tryptophan lyase(NosL):identification of cyanide as a reaction product[J]. Journal of the American Chemical Society, 2018,140(2):542-545. |
[35] |
Schmidt EW, Nelson JT, Rasko DA, et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(20):7315-7320.
doi: 10.1073/pnas.0501424102 URL pmid: 15883371 |
[36] |
Havarstein LS, Dzung BD, Ingolf F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export[J]. Mol Microbiol, 1995,16(2):229-240.
URL pmid: 7565085 |
[37] |
Ihnken LAF, Chatterjee C, Donk Wilfred AVD. In vitro reconstitution and substrate specificity of a lantibiotic protease[J]. Biochemistry, 2008,47(28):7352-7363.
URL pmid: 18570436 |
[38] | Müller, WM, Ensle M, Krawczyk B. et al. Leader peptide-directed processing of labyrinthopeptin A2 precursor peptide by the modifying enzyme LabKC[J]. Biochemistry, 2011,50(39):62-73. |
[39] | Donia Mohamed S, Schmidt Eric W. Cyanobactins-ubiquitous cyanobacterial ribosomal peptide metabolites[J]. Comprehensive Natural Products II, 2010, 539-558. |
[40] |
Kawulka KE, Sprules T, Diaper CM, et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links:formation and reduction of alpha-thio-alpha-amino acid derivatives[J]. Biochemistry, 2004,43(12):3385-3395.
URL pmid: 15035610 |
[41] |
Michelle LC, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1:The importance of the cyclic cystine knot[J]. Biochemistry, 2004,43(20):5965-5975.
doi: 10.1021/bi049711q URL pmid: 15147180 |
[42] |
Nolan E, Walsh C. How nature morphs peptide scaffolds into antibiotics[J]. Chembiochem, 2010,10(1):34-53.
doi: 10.1002/cbic.200800438 URL pmid: 19058272 |
[43] | Qiu R, Pei W, Zhang L, et al. Identification of the putative staphylococcal AgrB catalytic residues involving the proteolytic cleavage of AgrD to generate autoinducing peptide[J]. Journal of Biological Chemistry, 2005,280(17):695-704. |
[44] | Park SY, Kang HO, Jang HS, et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching[J]. Applied & Environmental Microbiology, 2005,71(5):32-41. |
[45] | Felton LM, Anthony C. Biochemistry:Role of PQQ as a mammalian enzyme cofactor?[J]. Nature, 2005,433(7025):11-20. |
[46] | Magnusson OT, Toyama H, Saeki M, et al. Quinone biogenesis:Structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(21):7913-7918. |
[47] |
Velásquez JE, vav der Donk WA. Van DD. Genome mining for ribosomally synthesized natural products[J]. Curr Opin Chem Biol, 2011,15(1):11-21.
URL pmid: 21095156 |
[48] |
Zhang Q, Zhao X, Mark C Walker, et al. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria[J]. Applied & Environmental Microbiology, 2015,81(13):4339-4350.
URL pmid: 25888176 |
[49] | de Los Santos ELC. NeuRiPP:Neural network identifcation of RiPP precursor peptides[J]. Scientific Reports, 2019,16(1):13406. |
[50] |
Skinnider MA, Johnston CW, Edgar RE, et al. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(42):E6343-E6351.
URL pmid: 27698135 |
[51] |
Liao R, Duan L, Lei C, et al. Thiopeptide biosynjournal featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications[J]. Chemistry & Biology, 2009,16(2):141-147.
doi: 10.1016/j.chembiol.2009.01.007 URL pmid: 19246004 |
[52] |
Kelly WL, Pan L, Li C. Thiostrepton biosynjournal:prototype for a new family of bacteriocins[J]. Journal of the American Chemical Society, 2009,131(12):4327-4334.
doi: 10.1021/ja807890a URL pmid: 19265401 |
[53] |
Brown LC, Acker Michael G, Clardy J, et al. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(8):2549-2553.
URL pmid: 19196969 |
[54] |
Huo L, Rachid S, Stadler M, et al. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynjournal[J]. Chemistry & Biology, 2012,19(10):1278-1287.
URL pmid: 23021914 |
[55] | Crone WJ, Vior NM, Santosaberturas J, et al. Dissecting bottromycin biosynjournal using comparative untargeted metabolomics[J]. Angewandte Chemie, 2016,55(33):9791-9795. |
[1] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[2] | 张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35. |
[3] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[4] | 贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244. |
[5] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[6] | 周正, 李卿, 陈万生, 张磊. 药用植物天然产物生物合成途径及关键催化酶的研究策略[J]. 生物技术通报, 2021, 37(8): 25-34. |
[7] | 刘静, 李亚超, 周梦岩, 吴鹏飞, 马祥庆, 李明. 植物蛋白质翻译后修饰组学研究进展[J]. 生物技术通报, 2021, 37(1): 67-76. |
[8] | 张丽珊, 孙莉娜, 林镇平, 林向民. 嗜水气单胞菌非核糖体肽合成酶基因功能研究[J]. 生物技术通报, 2020, 36(4): 93-99. |
[9] | 汪永平, 任伟, 王润娟, 邵坤仲, 高慧娟, 张金林. SUMO E3连接酶在植物适应非生物胁迫中的作用研究进展[J]. 生物技术通报, 2020, 36(2): 169-177. |
[10] | 严武平, 吴友根, 于靖, 杨东梅, 张军锋. 药用植物microRNA研究现状与展望[J]. 生物技术通报, 2019, 35(8): 178-185. |
[11] | 徐杰, 黄建忠, 李力. 基因组挖掘技术及其在真菌中的研究进展[J]. 生物技术通报, 2019, 35(11): 201-207. |
[12] | 姚彩苗, 赵雯雅, 汪步青, 郑利艳, 张丽萍, 刘洪伟. 环状芽孢杆菌泛基因组分析及次级代谢通路挖掘[J]. 生物技术通报, 2019, 35(10): 130-136. |
[13] | 牟永莹,顾培明,马博,闫文秀,王道平,潘映红. 基于质谱的定量蛋白质组学技术发展现状[J]. 生物技术通报, 2017, 33(9): 73-84. |
[14] | 张礼, 孙堆, 王晓, 郑春丽. 半胱氨酸参与生物体重金属抗性的研究进展[J]. 生物技术通报, 2017, 33(5): 26-33. |
[15] | 周文菲, 白娟, 龚春梅. 活性氧介导的植物蛋白质氧化修饰研究进展[J]. 生物技术通报, 2017, 33(4): 8-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||