生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0563
• 研究报告 • 下一篇
收稿日期:
2020-05-12
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
王丹,女,硕士研究生,研究方向:农业生物技术;E-mail:基金资助:
WANG Dan1,2(), LI Sheng-yan2(), LIU Jin-ping1(), LANG Zhi-hong2
Received:
2020-05-12
Published:
2020-12-26
Online:
2020-12-22
摘要:
虫害是造成玉米减产和品质下降的主要原因,玉米萜类合成酶基因tps2(terpene synthase 2)受虫害诱导表达,催化产生多种萜类化合物。qPCR检测不同激素和黏虫处理条件下tps2的表达;过表达植株(TPS2OE)进行玉米螟行为选择实验;原生质体瞬时表达检测tps2启动子的活性。结果显示植物激素(JA、SA、ET)和黏虫诱导tps2高表达;TPS2OE中tps2的表达量及目的萜类含量显著高于对照B73;玉米螟行为选择实验结果表明,尽管实验组和对照组叶片上的玉米螟卵的个数无显著差异,但TPS2OE叶片上的幼虫数较少,危害面积也更小;启动子截短分析发现-183至-129为tps2启动子必需的功能区段,并且-227至-183区段可能存在负调控元件。综上,tps2受植物激素和虫害诱导表达,TPS2OE植株对玉米螟幼虫有一定的抑制作用,tps2启动子必需的功能区段为-183至-129。
王丹, 李圣彦, 刘进平, 郎志宏. 玉米萜类合成酶基因tps2的功能及其启动子功能区段鉴定[J]. 生物技术通报, 2020, 36(12): 1-11.
WANG Dan, LI Sheng-yan, LIU Jin-ping, LANG Zhi-hong. Study on the Function of Terpene Synthase Gene tps2 and Its Promoter Functional Segment in Zea mays[J]. Biotechnology Bulletin, 2020, 36(12): 1-11.
引物名称 | 引物序列(5'-3') |
---|---|
tps2Pwf-R | GCGGCCGCTCTAGAACTAGTGGATCCCGTCT- ACTACTCGAACTAACTGAAC |
tps2Pwf968-F | TCGAGGTCGACGGTATCGATAAGCTTGTAC- ACACATCATCAATAAG |
tps2Pwf737-F | TCGAGGTCGACGGTATCGATAAGCTTAACTG- TGGTCGTCGCAAT |
tps2Pwf485-F | TCGAGGTCGACGGTATCGATAAGCTTCGTTTT- TTTATCCATTGC |
tps2Pwf327-F | TCGAGGTCGACGGTATCGATAAGCTTCTGTA- TGCCCTGACCTGA |
tps2Pwf227-F | TCGAGGTCGACGGTATCGATAAGCTTCTGGC- ATCGGAAGAAGCT |
tps2Pwf183-F | TCGAGGTCGACGGTATCGATAAGCTTTCGCC- CTATAAATTGGAG |
tps2Pwf129-F | TCGAGGTCGACGGTATCGATAAGCTTTCACA- ACACAAGCAGGCA |
tps2Pwf61-F | TCGAGGTCGACGGTATCGATAAGCTTGGCTTG- CTTTGGTTTCTG |
表1 用于扩增不同长度tps2启动子的引物序列
引物名称 | 引物序列(5'-3') |
---|---|
tps2Pwf-R | GCGGCCGCTCTAGAACTAGTGGATCCCGTCT- ACTACTCGAACTAACTGAAC |
tps2Pwf968-F | TCGAGGTCGACGGTATCGATAAGCTTGTAC- ACACATCATCAATAAG |
tps2Pwf737-F | TCGAGGTCGACGGTATCGATAAGCTTAACTG- TGGTCGTCGCAAT |
tps2Pwf485-F | TCGAGGTCGACGGTATCGATAAGCTTCGTTTT- TTTATCCATTGC |
tps2Pwf327-F | TCGAGGTCGACGGTATCGATAAGCTTCTGTA- TGCCCTGACCTGA |
tps2Pwf227-F | TCGAGGTCGACGGTATCGATAAGCTTCTGGC- ATCGGAAGAAGCT |
tps2Pwf183-F | TCGAGGTCGACGGTATCGATAAGCTTTCGCC- CTATAAATTGGAG |
tps2Pwf129-F | TCGAGGTCGACGGTATCGATAAGCTTTCACA- ACACAAGCAGGCA |
tps2Pwf61-F | TCGAGGTCGACGGTATCGATAAGCTTGGCTTG- CTTTGGTTTCTG |
图3 玉米TPS2和其他物种的萜类合成酶系统发育树 TPS:terpene synthase;TPC:terpenoid cyclases;TPSL:terpene synthase-like sequence;HLS:Alpha-humulene synthase;;GERD:(-)-germacrene D synthase;BLS:(S)-beta-bisabolene synthase;ATS:alpha-terpineol synthase;NLS:nerolidol synthase;MCS:(S)-beta-macrocarpene synthase;CBS:Beta-cubebene synthase;LLS:linalool synthase。Zm:玉米;Sob:双色高粱;LOC Os:水稻;Bra:二穗短柄草;Sei:狗尾草;At:拟南芥
[1] | Liu Q, Hallerman E, Peng Y, et al. Development of Bt rice and Bt maize in China and their efficacy in target pest control[J]. International J Molecular Science, 2016,17(10):E1561. |
[2] |
Chen MS. Inducible direct plant defense against insect herbivores:a review[J]. Insect Science, 2008,15(2):101-114.
doi: 10.1111/j.1744-7917.2008.00190.x URL |
[3] |
Zhuang X, Fiesselmann A, Zhao N, et al. Biosynjournal and emission of insect herbivory-induced volatile indole in rice[J]. Phytochemistry, 2012,73:15-22.
doi: 10.1016/j.phytochem.2011.08.029 URL pmid: 22000657 |
[4] |
Hagenbucher S, Olson DM, Ruberson JR, et al. Resistance mechanisms against arthropod herbivores in cotton and their interactions with natural enemies[J]. Critical Reviews in Plant Sciences, 2013,32:458-482.
doi: 10.1080/07352689.2013.809293 URL |
[5] |
Xu S, Zhou W, Pottinger S, et al. Herbivore associated elicitor-induced defences are highly specific among closely related nicotiana species[J]. BMC Plant Biology, 2015,15:2.
doi: 10.1186/s12870-014-0406-0 URL pmid: 25592329 |
[6] |
Fontana A, Held M, Fantaye CA, et al. Attractiveness of constitutive and herbivore-induced sesquiterpene blends of maize to the parasitic wasp Cotesia Marginiventris(Cresson)[J]. Journal of Chemical Ecology, 2011,37:582-591.
URL pmid: 21607717 |
[7] |
Davidovich-Rikanati R, Sitrit Y, Tadmor Y. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway[J]. Nature Biotechnology, 2007,25(8):899-901.
doi: 10.1038/nbt1312 URL pmid: 17592476 |
[8] |
Lücker J, Bouwmeester HJ, Schwab W, et al. Expression of clarkia s-linalool synthase in transgenic petunia plants results in the accumulation of s-linalyl-beta-d-glucopyranoside[J]. The Plant Journal, 2001,27(4):315-324.
URL pmid: 11532177 |
[9] |
Schnee C, Kollner T, Held M, et al. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(4):1129-1134.
doi: 10.1073/pnas.0508027103 URL pmid: 16418295 |
[10] | Kost C, Heil M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants[J]. Journal of Ecology, 2006,94:619-628. |
[11] |
Halitschke R, Schittko U, Pohnert G, et al. Molecular interactions between the specialist hrbivore manduca sexta(lepidoptera, sphingidae)and its natural host Nicotiana Attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivorespecific plant responses[J]. Plant Physiology, 2001,125:711-717.
doi: 10.1104/pp.125.2.711 URL pmid: 11161028 |
[12] |
Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001,291:2141-2144.
URL pmid: 11251117 |
[13] |
Turlings TCJ, Tumlinson JH, Lewis WJ. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps[J]. Science, 1990,250(4985):1251-1253.
doi: 10.1126/science.250.4985.1251 URL pmid: 17829213 |
[14] | Li SY, Wang H, Li FQ, et al. The maize transcription factor EREB58 mediates the jasmonate-induced production of sesquiterpene volatiles[J]. Plant Journal, 2015,84(2):296-308. |
[15] |
Yoshitomi K, Taniguchi S, Tanaka K, et al. Rice terpene synthase 24(OsTPS24)encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen[J]. Journal of Plant Physiology, 2015,191:120-126.
URL pmid: 26771167 |
[16] |
Benedetti M, Pontiggia D, Raggi S. et al. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:5533-5538.
doi: 10.1073/pnas.1504154112 URL pmid: 25870275 |
[17] |
Ozawa R, Arimura G, Takabayashi J, et al. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants[J]. Plant & Cell Physiology, 2000,41:391-398.
doi: 10.1093/pcp/41.4.391 URL pmid: 10845451 |
[18] | Shain L, Hillis W. Ethylene production in pinus radiata in response to sirex-amylostereum attack[J]. Phytopathology, 1972,62:1407-1409. |
[19] | Kendall D, Bjostad L. Phytohormone ecology-herbivory by thrips tabaci induces greater ethylene production in intact onions than mechanical damage alone[J]. Journal of Chemical Eecology, 1990,16:981-991. |
[20] |
O’Donnell P, Calvert C, Atzorn R, et al. Ethylene as a signal mediating the wound response of tomato plants[J]. Science, 1996,274(5294):1914-1917.
URL pmid: 8943205 |
[21] |
Schmelz EA, Alborn HT, Banchio E, et al. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea Mays during Spodoptera exigua herbivory[J]. Planta, 2003,216:665-673.
doi: 10.1007/s00425-002-0898-y URL pmid: 12569409 |
[22] |
Richter A, Schaff C, Zhang Z, et al. Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea Mays[J]. Plant Cell, 2016,28:2651-2665.
doi: 10.1105/tpc.15.00919 URL pmid: 27662898 |
[23] |
Dicke M, Beek TAV, Posthumus MA, et al. Isolation and identification of volatile kairomone that affects acarine predatorprey interactions involvement of host plant in its production[J]. Journal of Chemical Ecology, 1990,16(2):381-396.
doi: 10.1007/BF01021772 URL pmid: 24263497 |
[24] | 李圣彦 . 玉米萜类合成酶基因tps10表达调控的研究[D]. 北京:中国农业大学, 2015. |
Li SY . The expression regulation of terpene synthases gene tps10 in Zea mays[D]. Beijing: China Agricultural University, 2015. | |
[25] |
Dempsey D, Vlot A, Wildermuth MC, et al. Salicylic acid biosynjournal and netabolism[J]. Arabidopsis Book, 2011,9:E0156.
URL pmid: 22303280 |
[26] |
Pieterse C, Van der Does D, Zamioudis C, et al. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology, 2012,28:489-521.
URL pmid: 22559264 |
[27] |
Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology[J]. Plant Molecular Biology, 2016,91:691-702.
URL pmid: 27061301 |
[28] | Druege U, Franken P, Hajirezaei MR. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings[J]. Frontiers in Plant Science, 2016,7:E381. |
[29] |
Li N, Han X, Feng D, et al. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense:do we understand what they are whispering?[J]. International Journal of Molecular Sciences, 2019,20(3):E671.
URL pmid: 30720746 |
[30] | Verma V, Ravindran P, Kumar P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology, 2016,16(1):1-10 |
[31] |
Spoel SH, Johnson JS, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(47):18842-18847.
URL pmid: 17998535 |
[32] |
Bruce TJ, Matthes MC, Chamberlain K, et al. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(12):4553-4558.
doi: 10.1073/pnas.0710305105 URL pmid: 18356298 |
[33] |
Liu D, Huang X, Jing W, et al. Identification and functional analysis of two P450 enzymes of Gossypium hirsutum involved in DMNT and TMTT biosynjournal[J]. Plant Biotechnology Journal, 2017,16:581-590
doi: 10.1111/pbi.12797 URL pmid: 28710782 |
[34] |
Arimura GI, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in Lima bean leaves[J]. Nature, 2000,406(6795):512-515.
doi: 10.1038/35020072 URL pmid: 10952311 |
[35] |
Chen J, Zeng B, Zhang M, et al. Dynamic transcriptome landscape of maize embryo and endosperm development[J]. Plant Physiology, 2014,166(1):252-264.
URL pmid: 25037214 |
[36] |
Gisselbrecht SS, Palagi A, Kurland JV, et al. Transcriptional silencers in drosophila serve a dual role as transcriptional enhancers in alternate cellular contexts[J]. Molecular Cell, 2020,77(2):324-337.
doi: 10.1016/j.molcel.2019.10.004 URL |
[1] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[2] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[5] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[6] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[7] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[8] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[9] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[10] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[11] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[12] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[13] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[14] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[15] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||