生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 129-136.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0572
收稿日期:
2020-05-11
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
李晓佩,女,硕士研究生,研究方向:竹子分子育种;E-mail:基金资助:
LI Xiao-pei(), WANG Si-ning, SHI Jing-jing, GAO Zhi-min()
Received:
2020-05-11
Published:
2020-12-26
Online:
2020-12-22
摘要:
植物表皮蜡质是植物与外界环境直接相接触的一层疏水保护层,由于它能够调节植物体内的水分应对干旱、盐和冷等非生物胁迫,因此对植物的生长和发育起着重要的作用。在不同的物种之间,植物表皮蜡质的结构和组成均有着很大差异,但都具有类似的蜡质合成途径,对该途径的研究已经取得了显著的成果。多种转录因子参与了植物的蜡质生物合成,其中隶属于AP2转录因子家族中的WIN/SHN通过与某些基因的启动子结合,调节蜡质合成相关基因的表达,从而影响蜡质的合成。在植物表皮蜡质合成的基础之上,重点对调节蜡质形成的转录因子WIN/SHN的结构特点、表达模式、转录调节作用及其对生理和表型的影响,以及对逆境的应答反应进行了综述,并对蜡质合成的复杂性问题进行了论述。鉴于蜡质对生命科学和农业生产实践的重要价值,深入开展包括WIN/SHN在内的遗传因子及环境因子对蜡质合成、调控与运转的机制研究将具有重要意义。
李晓佩, 王思宁, 史晶晶, 高志民. 植物表皮蜡质合成及调控因子WIN/SHN的研究进展[J]. 生物技术通报, 2020, 36(12): 129-136.
LI Xiao-pei, WANG Si-ning, SHI Jing-jing, GAO Zhi-min. Progress of Plant Cuticular Wax Synthesis and Its Regulatory Factor WIN/SHN[J]. Biotechnology Bulletin, 2020, 36(12): 129-136.
[1] |
Yeats TH, Rose JKC. The formation and function of plant cuticles[J]. Plant Physiology, 2013,163(1):5-20.
doi: 10.1104/pp.113.222737 URL pmid: 23893170 |
[2] |
Bernard A, Joubes J. Arabidopsis cuticular waxes:advances in synjournal, export and regulation[J]. Progress in Lipid Research, 2013,52(1):110-129.
doi: 10.1016/j.plipres.2012.10.002 URL pmid: 23103356 |
[3] |
Borisjuk N, Hrmova M, Lopato S. Transcriptional regulation of cuticle biosynjournal[J]. Biotechnology Advances, 2014,32(2):526-540.
URL pmid: 24486292 |
[4] |
Nawrath C. Unraveling the complex network of cuticular structure and function[J]. Current Opinion in Plant Biology, 2006,9(3):281-287.
doi: 10.1016/j.pbi.2006.03.001 URL |
[5] | 李灵之, 马杰, 向建华, 等. 植物角质层内外蜡质的差异及其与抗逆性的关系[J]. 植物生理学报, 2011,47(7):680-684. |
Li LZ, Ma J, Xiang JH, et al. Composition differences of epicuticular and intracuticular wax layers and the relationship between cuticle and plant stress tolerance[J]. Plant Physiology Journal, 2011,47(7):680-684. | |
[6] |
Eglinton G, Hamilton RJ. Leaf epicuticular waxes[J]. Science, 1967,156(3780):1322-1335.
doi: 10.1126/science.156.3780.1322 URL pmid: 4975474 |
[7] |
Barthlott W, Neinhuis C, Cutler D, et al. Classification and terminology of plant epicuticular waxes[J]. Botanical Journal of the Linnean Society, 1998,126(3):237-260.
doi: 10.1111/boj.1998.126.issue-3 URL |
[8] |
Kunst L, Samuels AL. Biosynjournal and secretion of plant cuticular wax[J]. Progress in Lipid Research, 2003,42(1):51-80.
doi: 10.1016/s0163-7827(02)00045-0 URL pmid: 12467640 |
[9] | Zeng Q, Liu DC, Liu Y. The overview and prospect of chemical composition of plant cuticular wax[J]. Acta Ecologica Sinica, 2013,33(17):5133-5140. |
[10] |
Lee , SH , Stephens JL, Englund PT. A fatty-acid synjournal mechanism specialized for parasitism[J]. Nature Reviews Microbiology, 2007,5(4):287-297.
doi: 10.1038/nrmicro1617 URL pmid: 17363967 |
[11] |
Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism[J]. The Arabidopsis Book, 2010,8:e0133.
URL pmid: 22303259 |
[12] |
Nawrath C, Schreiber L, Franke RB, et al. Apoplastic diffusion barriers in Arabidopsis[J]. The Arabidopsis Book, 2013,11:e0167.
URL pmid: 24465172 |
[13] | Cheesbrough TM, Kolattukudy PE. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum[J]. Proceedings of the National Academy of Science of the United States of America, 1984,81(21):6613-6617. |
[14] |
Metz JG, Pollard MR, Anderson L, et al. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed[J]. Plant Physiology, 2000,122(3):635-644.
doi: 10.1104/pp.122.3.635 URL pmid: 10712526 |
[15] |
Li F, Wu X, Lam P, et al. Identification of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynjournal in Arabidopsis[J]. Plant Physiology, 2008,148(1):97-107.
doi: 10.1104/pp.108.123471 URL pmid: 18621978 |
[16] |
Kunst L, Samuels L. Plant cuticles shine:advances in wax biosynjournal and export[J]. Current Opinion in Plant Biology, 2009,12(6):721-727.
doi: 10.1016/j.pbi.2009.09.009 URL pmid: 19864175 |
[17] |
Lü SY, Zhao HY, Marais DL, et al. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status[J]. Plant Physiology, 2012,159(3):930-944.
doi: 10.1104/pp.112.198697 URL pmid: 22635115 |
[18] |
Jenks MA, Rashotte AM, Tuttle HA, et al. Mutants in Arabidopsis thaliana altered in epicuticular wax and leaf morphology[J]. Plant Physiology, 1996,110(2):377-385.
doi: 10.1104/pp.110.2.377 URL pmid: 12226189 |
[19] | Zhang D, Yang H, Wang X, et al. Cytochrome P450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synjournal[J]. New Phytologist, 2020,225(5):2094-2107. |
[20] |
Todaka D, Nakashima K, Shinozaki K, et al. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice[J]. Rice, 2012,5(1):6-13.
URL pmid: 24764506 |
[21] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor(AP2/ERF)transcription factors:mediators of stress responses and developmental programs[J]. New Phytologist, 2013,199(3):639-649.
doi: 10.1111/nph.12291 URL |
[22] |
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat[J]. Frontiers in Plant Science, 2014,5:170.
doi: 10.3389/fpls.2014.00170 URL pmid: 24904597 |
[23] | Aharoni A, Dixit S, Jetter R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynjournal, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis[J]. The Plant Cell, 2004,16(9):2463-2480. |
[24] |
Broun P, Poindexter P, Osborne E, et al. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(13):4706-4711.
URL pmid: 15070782 |
[25] | Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold inducible gene expression[J]. Biochemical and Biophysical Research Communication, 2002,290(3):998-1009. |
[26] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006,140(2):411-432.
URL pmid: 16407444 |
[27] |
Wang Y, Wan L, Zhang L, et al. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synjournal related genes and increases wax production in rice[J]. Plant Molecular Biology, 2012,78(3):275-288.
doi: 10.1007/s11103-011-9861-2 URL pmid: 22130861 |
[28] | Xu Y, Wu H, Zhao M, et al. Overexpression of the transcription factors GmSHN1 and GmSHN9 differentially regulates wax and cutin biosynjournal, alters cuticle properties, and changes leaf phenotypes in Arabidopsis[J]. International Journal of Molecular Sciences, 2016,17(4):587. |
[29] |
Al-Abdallat A, Al-Debei H, Ayad J, et al. Over expression of SlSHN1 gene improves drought tolerance by increasing cuticular wax accumulation in tomato[J]. International Journal of Molecular Sciences, 2014,15(11):19499-19515.
doi: 10.3390/ijms151119499 URL pmid: 25350113 |
[30] |
Shi JX, Adato A, Alkan N, et al. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning[J]. New Phytologist, 2013,197(2):468-480.
doi: 10.1111/nph.12032 URL |
[31] |
Craft J, Samalova M, Baroux C, et al. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis[J]. The Plant Journal, 2005,41(6):899-918.
URL pmid: 15743453 |
[32] |
Taketa S, Amano S, Tsujino Y, et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(10):4062-4067.
doi: 10.1073/pnas.0711034105 URL pmid: 18316719 |
[33] | 李铖, 潘健, 连红莉, 等. 黄瓜蜡质合成调控基因CsWIN1的克隆与功能初步分析[J]. 园艺学报, 2018,45(2):359-370. |
Li C, Pan J, Lian HL, et al. Cloning and functional analysis of CsWIN1, a transcription factor regulated the wax synjournal in cucumber[J]. Acta Horticulturae Sinica, 2018,45(2):359-370. | |
[34] |
Zhou X, Jenks MA, Liu J, et al. Overexpression of transcription factor OsWR2 regulates wax and cutin biosynjournal in rice and enhances its tolerance to water deficit[J]. Plant Molecular Biology Reporter, 2014,32(3):719-731.
doi: 10.1007/s11105-013-0687-8 URL |
[35] | Isaacson T, Kosma DK, Matas AJ, et al. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss[J]. The Plant Journal, 2009,60(2):363-377. |
[36] |
Lashbrooke J, Aharoni A, Costa F. Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development[J]. Journal of Experimental Botany, 2015,66(21):6579-6589.
URL pmid: 26220084 |
[37] |
Zhang YL, Zhang CL, Wang GL, et al. Apple AP2/EREBP transcription factor MdSHINE2 confers drought resistance by regulating wax biosynjournal[J]. Planta, 2019,249(5):1627-1643.
URL pmid: 30826884 |
[38] |
Djemal R, Mila I, Bouzayen M, et al. Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley(Hordeum vulgare L.)[J]. Journal of Plant Physiology, 2018,228:39-46.
URL pmid: 29852333 |
[39] |
Kumar A, Yogendra KN, Karre S, et al. WAX INDUCER1(HvWIN1)transcription factor regulates free fatty acid biosynthetic genes to reinforce cuticle to resist Fusarium head blight in barley spikelets[J]. Journal of Experimental Botany, 2016,67(14):4127-4139.
URL pmid: 27194736 |
[40] | 陈伟, 刘德春, 杨莉, 等. 植物表皮蜡质及相关基因研究进展[J]. 植物生理学报, 2016,52(8):1117-1127. |
Chen W, Liu DC, Yang L, et al. Research progress of plant cuticular wax and related genes[J]. Plant Physiology Journal, 2016,52(8):1117-1127. | |
[41] |
Lisso J, Schröder F, Schippers JHM, et al. NFXL2 modifies cuticle properties in Arabidopsis[J]. Plant Signaling & Behavior. 2012,7(5):551-555.
URL pmid: 22516817 |
[42] |
Qin F, Kodaira KS, Maruyama K, et al. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response[J]. Plant Physiology, 2011,157(4):1900-1913.
URL pmid: 22013217 |
[43] |
Kannangara R, Branigan C, Liu Y, et al. The transcription factor WIN1/SHN1 regulates cutin biosynjournal in Arabidopsis thaliana[J]. The Plant Cell, 2007,19(4):1278-1294.
URL pmid: 17449808 |
[44] | Karaba A. Improvement of water use efficiency in rice and tomato using Arabidopsis wax biosynthetic genes and transcription factors[D]. Wageningen:Wageningen University, 2007. |
[45] |
Djemal R, Khoudi H. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat(Triticum turgidum. L. subsp. durum)[J]. Protoplasma, 2015,252(6):1461-1473.
doi: 10.1007/s00709-015-0775-8 URL pmid: 25687296 |
[46] | 王立山, 丁兵, 李玉花, 等. 植物表皮蜡质合成转运调控相关基因与干旱响应的研究进展[J]. 园艺学报, 2018,45(9):1831-1843. |
Wang LS, Ding B, Li YH, et al. Reaserch progress of plant cuticular wax biosynjournal, export and regulation related genes responsed to drought[J]. Acta Horticulturae Sinica, 2018,45(9):1831-1843. | |
[47] |
Oshima Y, Shikata M, Koyama T, et al. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri[J]. The Plant Cell, 2013,25(5):1609-1624.
URL pmid: 23709630 |
[48] |
Ambavaram MMR, Krishnan A, Trijatmiko KR, et al. Coordinated activation of cellulose and repression of lignin biosynjournal pathways in rice[J]. Plant Physiology, 2011,155(2):916-931.
URL pmid: 21205614 |
[49] | Bondada BR, Oosterhuis DM, Murphy JB, et al. Effect of water stress on the epicuticular wax composition and ultrastructure of cotton(Gossypium hirsutum L.)leaf, bract, and boll[J]. Environmental and Experimental Botany, 1996,36(1):61-69. |
[50] | Samdur MY, Manivel P, Jain VK, et al. Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut[J]. Crop Science, 2003,43(4):1294-1299. |
[51] |
Cameron KD, Teece MA, Smart LB. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco[J]. Plant Physiology, 2006,140(1):176-183.
URL pmid: 16361524 |
[52] |
Kosma DK, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis[J]. Plant Physiology, 2009,151(4):1918-1929.
doi: 10.1104/pp.109.141911 URL pmid: 19819982 |
[53] |
Seo PJ, Lee SB, Suh MC, et al. The MYB96 transcription factor regulates cuticular wax biosynjournal under drought conditions in Arabidopsis[J]. The Plant Cell, 2011,23(3):1138-1152.
URL pmid: 21398568 |
[54] |
Yang J, Zhao X, Liang L, et al. Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus[J]. Applied Microbiology and Biotechnology, 2011,89(6):1895-1903.
URL pmid: 21110018 |
[55] |
Amid A, Lytovchenko A, Fernie AR, et al. The sensitive to freezing3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies[J]. Journal of Experimental Botany, 2012,63(14):5289-5299.
URL pmid: 22791831 |
[56] |
Uppalapati SR, Ishiga Y, Doraiswamy V, et al. Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens[J]. The Plant Cell, 2012,24(1):353-370.
doi: 10.1105/tpc.111.093104 URL pmid: 22294617 |
[1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[2] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[3] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[4] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[7] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[8] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[9] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[10] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[11] | 王荣花, 王树彬, 张志刚, 赵智中, 李巧云, 王立华, 刘栓桃. 大白菜KCS基因家族鉴定及在蜡粉近等基因系中表达分析[J]. 生物技术通报, 2022, 38(4): 86-96. |
[12] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[13] | 姚宇, 顾佳珺, 孙超, 申国安, 郭宝林. 植物类黄酮UDP-糖基转移酶研究进展[J]. 生物技术通报, 2022, 38(12): 47-57. |
[14] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[15] | 陈臣, 黄芝阳, 于海燕, 袁海彬, 田怀香. 原核生物转录调控研究技术及进展[J]. 生物技术通报, 2022, 38(10): 54-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||