生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 256-264.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0257
收稿日期:
2020-03-10
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
郑文清,女,博士研究生,研究方向:植物分子生物学;E-mail:基金资助:
ZHENG Wen-qing(), ZHANG Qian, DU Liang()
Received:
2020-03-10
Published:
2020-12-26
Online:
2020-12-22
摘要:
MicroRNA(miRNA)作为一类大小长约21-24个核苷酸的内源非编码RNA,通过影响靶基因mRNA的稳定性或者翻译过程调控基因的表达。随着现代分子生物学技术的发展,越来越多的研究表明miRNA在植物的生长和发育过程中发挥着重要的作用。但是,miRNA功能研究缺乏有效的、适用性广的方法。介绍了一种可以特异地靶标miRNA方法,即短串联靶标模拟(Short tandem target mimic,STTM),并对STTM的基本特点和作用机制、与其他类似技术的比较以及其在植物中miRNA功能研究中的应用等方面进行了总结,有望为今后植物miRNA的功能研究提供技术参考。
郑文清, 张倩, 杜亮. 短串联靶标模拟技术及其在植物miRNA功能研究中的应用[J]. 生物技术通报, 2020, 36(12): 256-264.
ZHENG Wen-qing, ZHANG Qian, DU Liang. Short Tandem Target Mimic and Its Application in Analyzing Plant miRNA Functions[J]. Biotechnology Bulletin, 2020, 36(12): 256-264.
技术 | 结构 | 作用机制 | 优点 | 缺点 |
---|---|---|---|---|
TM | 1个结合位点无连接序列3个碱基的错配 | RISC-RNA interaction | 构建较容易 | 不适用于有多个成员的miRNA家族 |
SP | 4-15个结合位点连接序列4 nt2个碱基的错配 | RISC-RNA interaction | 在动物中沉默效果较好 | 构建困难 |
STTM | 2个结合位点连接序列48-88 nt3个碱基的错配 | RISC-RNA interaction SDN-mediated degradation | 构建较容易,效率高特异性强,表型稳定 | 不适用于低表达丰度的miRNA家族 |
表1 TM、SP和STTM技术的比较
技术 | 结构 | 作用机制 | 优点 | 缺点 |
---|---|---|---|---|
TM | 1个结合位点无连接序列3个碱基的错配 | RISC-RNA interaction | 构建较容易 | 不适用于有多个成员的miRNA家族 |
SP | 4-15个结合位点连接序列4 nt2个碱基的错配 | RISC-RNA interaction | 在动物中沉默效果较好 | 构建困难 |
STTM | 2个结合位点连接序列48-88 nt3个碱基的错配 | RISC-RNA interaction SDN-mediated degradation | 构建较容易,效率高特异性强,表型稳定 | 不适用于低表达丰度的miRNA家族 |
[1] | Brosnan CA, Voinnet O. The long and the short of noncoding RNAs[J]. Current Opinion Cell Biology, 2009,21(3):416-425. |
[2] |
Ghildiyal M, Zamore PD[J]. Small silencing RNAs:an expanding universe[J]. Nature Reviews Genetics, 2009,10(2):94-108.
URL pmid: 19148191 |
[3] | Matzke M, Kanno T, Daxinger L, et al. RNA-mediated chromatin-based silencing in plants[J]. Current Opinion Cell Biology, 2009,21(3):367-376. |
[4] | Simon SA, Meyers BC. Small RNA-mediated epigenetic modifications in plants[J]. Current Opinion Plant Biology, 2011,14(2):148-155. |
[5] |
Jones-rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006,57:19-53.
URL pmid: 16669754 |
[6] |
Sam GJ, Harpreet Kaur S, Stijn VD, et al. MiRBase:tools for microRNA genomics[J]. Nucleic Acids Research, 2008,36:D154-D158.
URL pmid: 17991681 |
[7] |
Kan N, Mccormick K, Nakano M, et al. Bioinformatics analysis of small RNAs in plants using next generation sequencing technologies[J]. Methods in Molecular Biology, 2010,592:89-106.
URL pmid: 19802591 |
[8] |
Till BJ, Reynolds SH, Greene EA, et al. Large-scale discovery of induced point mutations with high-throughput TILLING[J]. Genome Research, 2003,13(3):524-530.
doi: 10.1101/gr.977903 URL pmid: 12618384 |
[9] |
Baker CC, Patrick S, Frank W, et al. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis[J]. Current Biology:CB, 2005,15(4):303-315.
URL pmid: 15723790 |
[10] |
Sha a, Zhao J, Yin K, et al. Virus-based microRNA silencing in plants[J]. Plant Physiology, 2014,164(1):36-47.
URL pmid: 24296072 |
[11] |
Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007,39(8):1033-1037.
URL pmid: 17643101 |
[12] |
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells[J]. Nature Methods, 2007,4(9):721-726.
URL pmid: 17694064 |
[13] |
Ebert MS, Sharp PA. MicroRNA sponges:progress and possibilities[J]. RNA, 2010,16(11):2043-2050.
URL pmid: 20855538 |
[14] | Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges[J]. Current Biology, 2010,20(19):858-861. |
[15] |
Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, et al. Generation of miRNA sponge constructs[J]. Methods, 2012,58(2):113-117.
doi: 10.1016/j.ymeth.2012.07.019 URL pmid: 22836127 |
[16] | Haraguchi T, Ozaki Y, Iba H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells[J]. Nucleic Acids Research, 2009,37(6):e43. |
[17] |
Xie J, Ameres S L, Friedline R, et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors[J]. Nature Methods, 2012,9(4):403-409.
URL pmid: 22388288 |
[18] |
Yan J, Gu Y, Jia X, et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. Plant Cell, 2012,24(2):415-427.
URL pmid: 22345490 |
[19] | Wong J, Gao L, Yang Y, et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection[J]. Plant Journal, 2014,79(6):928-940. |
[20] |
Cao D, Wang J, Ju Z, et al. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic[J]. Plant Science, 2016,247:1-12.
URL pmid: 27095395 |
[21] |
Gu Z, Huang C, Li F, Zhou X. A versatile system for functional analysis of genes and microRNAs in cotton[J]. Plant Biotechnology Journal, 2014,12(5):638-649.
doi: 10.1111/pbi.12169 URL pmid: 24521483 |
[22] |
Jiao J, Wang Y, Selvaraj JN, et al. Barley stripe mosaic virus(BSMV)induced microRNA silencing in common wheat(Triticum aestivum L.)[J]. PLoS One, 2015,10(5):e0126621.
URL pmid: 25955840 |
[23] | 李赵杰, 简超, 刘香利, 等. Tae-miR9677小串联模拟靶标(STTM)表达载体构建及小麦的遗传转化研究[J]. 麦类作物学报, 2016,36(4):404-408. |
Li ZJ, Jian C, Liu XL, et al. Construction of expression vector of Tae-miR9677 short tandem target mimic(STTM)and transformation in Wheat[J]. Journal of Triticeae Crops, 2016,36(4):404-408. | |
[24] | Zhang H, Zhang J, Yan J, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits[J]. Proceedings of the National Academy of Sciences, 2017,114(20):5277-5282. |
[25] |
Peng T, Qiao M, Liu H, et al. A Resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants[J]. Molecular Plant, 2018,11:1400-1417.
doi: 10.1016/j.molp.2018.09.003 URL pmid: 30243763 |
[26] |
Tang G, Yan J, Gu Y, et al. Construction of short tandem target mimic(STTM)to block the functions of plant and animal microRNAs[J]. Methods, 2012,58(2):118-125.
URL pmid: 23098881 |
[27] |
Tang , G . siRNA and miRNA:an insight into RISCs[J]. Trends in Biochemical Sciences, 2005,30(2):106-114.
URL pmid: 15691656 |
[28] |
Takeshi H, Yuka O, Hideo I. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells[J]. Nucleic Acids Research, 2009,37(6):e43.
URL pmid: 19223327 |
[29] |
Yanli W, Stefan J, Haitao L, et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex[J]. Nature, 2009,456(7224):921-926.
URL pmid: 19092929 |
[30] |
Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis[J]. Science, 2008,321(5895):1490-1492.
URL pmid: 18787168 |
[31] |
Todesco M, Rubio-Somoza I, Paz-Ares J, et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana[J]. PLoS Genetics, 2010,6(7):e1001031.
URL pmid: 20661442 |
[32] |
Tang G, Tang X. Short tandem target mimic:a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals[J]. Journal of Genetics and Genomics, 2013,40(6):291-296.
doi: 10.1016/j.jgg.2013.02.004 URL pmid: 23790628 |
[33] |
Reichel M, Li Y, Li J, et al. Inhibiting plant microRNA activity:molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target micro RNAs[J]. Plant Biotechnology Journal, 2015,13(7):915-926.
URL pmid: 25600074 |
[34] | 杨天啸. 利用 STTM 技术分析拟南芥 miR160 和 miR165/166的互作网络及玉米 miR166 的初步功能[D]. 郑州:河南农业大学, 2018. |
Yang TX. Dissecting the molecular mechanism of miR160 and miR165/166 interaction in Arabidopsis and miR166 functions in maize[D]. Zhengzhou:Henan Agricultural University, 2018. | |
[35] |
Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell, 2002,110(4):513-520.
doi: 10.1016/s0092-8674(02)00863-2 URL pmid: 12202040 |
[36] |
Prigge MJ, Denichiro O, Alonso JM, et al. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development[J]. Plant Cell, 2005,17(1):61-76.
URL pmid: 15598805 |
[37] |
Guiliang T, Reinhart B J, Bartel DP, et al. A biochemical framework for RNA silencing in plants[J]. Genes & Development, 2003,17(1):49-63.
URL pmid: 12514099 |
[38] |
Kim J, Jung JH, Reyes JL, et al. MicroRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems[J]. The Plant Journal, 2005,42(1):84-94.
doi: 10.1111/j.1365-313X.2005.02354.x URL pmid: 15773855 |
[39] |
Leor W, Grigg SP, Mingtang X, et al. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes[J]. Development, 2005,132(16):3657-3668.
doi: 10.1242/dev.01942 URL pmid: 16033795 |
[40] |
Jae-Hoon J, Chung-Mo P. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis[J]. Planta, 2007,225(6):1327-1338.
doi: 10.1007/s00425-006-0439-1 URL pmid: 17109148 |
[41] |
Mallory A, Reinhart BR, Mw Tang G, et al. MicroRNA control of PHABULOSA in leaf development:importance of pairing to the microRNA 5'region[J]. EMBO J, 2014,23(16):3356-3364.
doi: 10.1038/sj.emboj.7600340 URL pmid: 15282547 |
[42] | Sakaguchi J, Watanabe Y. MiR165/166 and the development of land plants[J]. Development Growth & Differentiation, 2012,54(1):93-99. |
[43] | Otsuga D, Deguzman B, Prigge MJ, et al. REVOLUTA regulates meristem initiation at lateral positions[J]. Plant Journal, 2010,25(2):223-236. |
[44] |
Yang T, Wang Y, Teotia S, et al. The Interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis[J]. Scientific Reports, 2019,9(1):2832.
doi: 10.1038/s41598-019-39397-7 URL pmid: 30808969 |
[45] |
Zhang J, Zhang H, Srivastavaa K, et al. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiology, 2018,176(3):2082-2094.
URL pmid: 29367235 |
[46] | 王慧杰, 杨杨, 严孙艺, 等. STTM165/166转化水稻的初步研究[J]. 杂交水稻, 2017,32(5):56-60. |
Wang HJ, Yang Y, Yan SY, et al. A preliminary study on transformation of STTM165/166 into rice[J]. Hybrid Rice, 2017,32(5):56-60. | |
[47] |
Jia X, Ding N, Fan W, et al. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic[J]. Plant Science, 2015,233:11-21.
doi: 10.1016/j.plantsci.2014.12.020 URL pmid: 25711809 |
[48] |
Gu Z, Huang C, Li F, et al. A versatile system for functional analysis of genes and microRNA s in cotton[J]. Plant Biotechnology Journal, 2014,12:638-649.
URL pmid: 24521483 |
[49] |
Liu X, Liu S, Wang R, et al. Analyses of MiRNA functions in maize using a newly developed ZMBJ-CMV-2b N81-STTM vector[J]. Frontiers in Plant Science, 2019,10:1277.
doi: 10.3389/fpls.2019.01277 URL pmid: 31681375 |
[50] | 曹东艳. miR396在番茄果实生长发育中的功能研究[D]. 北京:中国农业大学, 2018. |
Cao DY. Functional identification of miR396 on tomato fruit growth and development[D]. Beijing:China Agricultural University, 2018. | |
[51] |
Jiang N, Meng J, Cui J, et al. Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans[J]. Horticulture Research, 2018,5:9.
doi: 10.1038/s41438-018-0017-2 URL pmid: 29507733 |
[52] | Canto-Pastor A, Santos B, Valli A, et al. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato[J]. Proceedings of the National Academy of Sciences, 2019,116(7):2755-2760. |
[53] |
Guo G, Liu X, Sun F, et al. Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling[J]. Plant Cell, 2018,30(4):796-814.
URL pmid: 29567662 |
[54] | Proust H, Bazin J, Sorin C, et al. Stable inactivation of microRNAs in Medicago truncatula[J]. Methods Molecular Biology, 2018,1822:123-132. |
[55] |
Wong J, Gao L, Yang Y, et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection[J]. Plant Journal, 2014,79:928-940.
doi: 10.1111/tpj.12590 URL |
[56] |
Bao D, Ganbaatar O, Cui X, et al. Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful soybean mosaic virus infection in soybean[J]. Molecular Plant Pathology, 2018,19:948-960.
URL pmid: 28695996 |
[57] | Su Y, Li H, Wang Y, et al. Poplar miR472a targeting NBS-LRRs is involved in effective defense response to necrotrophic fungus Cytospora chrysosperma[J]. Journal Experimental Botany, 2018,69(22):5519-5530. |
[58] | 梁澜. PtrmiR164a在杨树次生细胞壁合成过程中的功能研究[D]. 重庆:西南大学, 2017. |
Liang L. Functional characterization of PtrmiR164a invoved in the regulation of secondary cell wall in Populus[D]. Chongqing:Southwest University, 2017. | |
[59] | Sosa-Valencia G, Palomar M, Covarrubias A, et al. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought[J]. Journal Experimental Botany, 2017,68:2013-2026. |
[60] |
Liu J, Cheng X, Liu D, et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling[J]. PLoS Genetics, 2014,10(12):e1004755.
doi: 10.1371/journal.pgen.1004755 URL pmid: 25502438 |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[6] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[7] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[8] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[9] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[10] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[11] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[12] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[13] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[14] | 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法[J]. 生物技术通报, 2023, 39(4): 212-220. |
[15] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||