生物技术通报 ›› 2020, Vol. 36 ›› Issue (2): 9-16.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1224
杨立杰, 曾祥芳, 谯仕彦
收稿日期:
2019-12-17
出版日期:
2020-02-26
发布日期:
2020-02-23
作者简介:
杨立杰,男,博士研究生,研究方向:动物营养与饲料科学;E-mail:yang.superman@163.com
基金资助:
YANG Li-jie, ZENG Xiang-fang, QIAO Shi-yan
Received:
2019-12-17
Published:
2020-02-26
Online:
2020-02-23
摘要: 纤维作为高等植物细胞壁的主要组成部分,是地球上分布最广、储量最丰富的可再生资源。而非淀粉多糖(Non starch polysaccharide,NSP)作为纤维结构中除木质素外,最重要的构成组分,在纤维的功能性调控中扮演着重要的角色。纤维对肠道菌群调控的机制研究已成为当前微生物领域研究的热点,但其研究结果存在不一致性。纤维源的不同、NSP组分的差异及其评价体系的不完善,均是导致其应用效果呈现多样性的重要原因。就近几年有关NSP对猪肠道菌群调控中的研究进行综述,讨论了NSP在评价日粮纤维与肠道微生物区系平衡中的意义及存在的问题,旨在为进一步揭示营养素与肠道菌群的对话机制,促进动物肠道健康及纤维的合理利用提供借鉴。
杨立杰, 曾祥芳, 谯仕彦. 非淀粉多糖在猪肠道菌群调控中的研究进展[J]. 生物技术通报, 2020, 36(2): 9-16.
YANG Li-jie, ZENG Xiang-fang, QIAO Shi-yan. Research Advances on Non-starch Polysaccharide in the Regulation of Intestinal Microflora in Pigs[J]. Biotechnology Bulletin, 2020, 36(2): 9-16.
[1] Wu X, Chen D, Yu B, et al.Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs[J]. Nutrition, 2018, 51(6):20-28. [2] Ginting N, Pase E.Effect of incubation time of sago(metroxylon sago)waste by local microorganism“ginta”on ph, crude protein, and crude fiber content[C]// IOP Conference Series:Earth and Enviro-nmental Science, 2018. [3] 郝帅帅. 高米糠日粮对苏淮猪生产性能、血液指标及肉质性状的影响[D]. 南京:南京农业大学, 2016. [4] 王志博, 陆东东, 倪冬姣, 等. 纤维对猪的营养和肠道健康的影响[J]. 国外畜牧学, 2018, 38(6):93-96. [5] 张奇, 姜海龙, 杨海天, 等. 饲粮纤维对猪消化生理功能的影响研究进展[J]. 饲料研究, 2019, (5):37-40. [6] Patience JF, Petry AL.Susceptibility of fibre to exogenous carbohy-drases and impact on performance in swine[M]//The value of fibre:Engaging the second brain for animal nutrition. Wageningen Academic Publishers, 2019:689-695. [7] 乔岩瑞. 纤维性非淀粉多糖在单胃动物营养中的作用[J]. 饲料工业, 1995(9):11-15. [8] 黄庆华. 猪饲料中非淀粉多糖组分的测定方法及其对能量消化率的影响研究[D]. 北京:中国农业科学院, 2015. [9] Williams BA, Verstegen MWA, Tamminga S.Fermentation in the large intestine of single-stomached animals and its relationship to animal health[J]. Nutrition Research Reviews, 2002, 14(2):207-228. [10] Jha R, Berrocoso JD.Review:Dietary fiber utilization and its effects on physiological functions and gut health of swine[J]. Animal, 2015, 9(9):1441-1452. [11] Koistinen VM, Olli K, Borewicz K, et al.Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation[J]. Microbiome, 2019, 7(1):103-116. [12] Mateos GG, Martín F, Latorre MA, et al.Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice[J]. Animal Science, 2006, 82(1):57-63. [13] Verstegen MWA, Williams BA.Alternatives to the use of antibiotics as growth promoters for monogastric animals[J]. Animal Biotechnology, 2002, 13(1):113-127. [14] Rubin R.High-fiber diet might protect against range of conditions[J]. JAMA, 2019, 321(17):1653-1655. [15] Molist F, Van OM, Pérez JF, et al.Relevance of functional properties of dietary fibre in diets for weanling pigs[J]. Animal Feed Science and Technology, 2014, 189:1-10. [16] Hamaker BR, Tuncil YE.A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota[J]. Journal of Molecular Biology, 2014, 426(23):3838-3850. [17] 郭元晟, 靳鹏. 发酵乳酸杆菌对肉鸡血清抗氧化性能及肠道挥发性脂肪酸(VFA)的影响[J]. 畜牧与饲料科学, 2016, 37(2):10-13. [18] 向兴, 唐行模, 刘艺, 等. 非淀粉多糖酶在猪上的应用研究进展[J]. 今日养猪业, 2019(3):94-97. [19] Engberg RM, Hammersh JM, Johansen NF, et al.Fermented feed for laying hens:effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora[J]. British Poultry Science, 2009, 50(2):228-239. [20] Niba AT, Beal JD, Kudi AC, et al.Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry[J]. African Journal of Biotechnology, 2009, 8(9):1758-1767. [21] 刘志云, 钟晓霞, 谢跃伟, 等. 发酵玉米-豆粕型全价饲料对生长猪生长性能、粪便臭味物质和菌群区系的影响[J]. 畜牧兽医学报, 2018, 49(6):1169-1177. [22] Asp NG.Dietary carbohydrates:classification by chemistry and physiology[J]. Food Chemistry, 1996, 57(1):9-14. [23] Choct M, Dersjant-Li Y, et al.Soy oligosaccharides and soluble non-starch polysaccharides:a review of digestion, nutritive and anti-nutritive effects in pigs and poultry[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(10):1386-1398. [24] Just A, JoséA FJ, Rgensen H. The net energy value of diets for growth in pigs in relation to the fermentative processes in the digestive tract and the site of absorption of the nutrients[J]. Livestock Production Science, 1983, 10(2):171-186. [25] Bourquin LD, Titgemeyer EC, Fahey GC.Vegetable fiber fermentation by human fecal bacteria:cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues[J]. Journal of Nutrition, 1993, 123(5):860-869. [26] Englyst KN, Liu S, Englyst HN.Nutritional characterization and measurement of dietary carbohydrates[J]. European Journal of Clinical Nutrition, 2007, 12(61):19-39. [27] 汪海峰, 朱军莉, 刘建新. 日粮纤维对猪饲料能值评定的影响[J]. 中国畜牧杂志, 2006, 42(23):45-47. [28] Varel VH.Activity of fiber-degrading microorganisms in the pig large intestine[J]. Journal of Animal Science, 1987, 65(2):488-496. [29] Ashida H, Ogawa M, Kim M, et al.Bacteria and host interactions in the gut epithelial barrier[J]. Nature Chemical Biology, 2011, 8(1):36-45. [30] Tilg H, Kaser A.Gut microbiome, obesity, and metabolic dysfunction[J]. The Journal of Clinical Investigation, 2011, 121(6):2126-2132. [31] Walter P, Ron D.The unfolded protein response:from stress pa-thway to homeostatic regulation[J]. Science, 2011, 334(6059):1081-1086. [32] Wong JMW, De Souza R, Kendall CWC, et al.Colonic health:fermentation and short chain fatty acids[J]. Journal of Clinical Gastroenterology, 2006, 40(3):235-243. [33] Elia M, Cummings JH.Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates[J]. European Journal of Clinical Nutrition, 2007, 12(61):40-74. [34] Koh A, DeVadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345. [35] Cummings JH, Macfarlane GT.The control and consequences of bacterial fermentation in the human colon[J]. Journal of Applied Bacteriology, 1991, 70(6):443-459. [36] Cummings JH, Macfarlane GT, Englyst HN.Prebiotic digestion and fermentation[J]. The American Journal of Clinical Nutrition, 2001, 73(2):415-420. [37] Topping DL, Clifton PM.Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides[J]. Physiological Reviews, 2001, 81(3):1031-1064. [38] Nie Y, Lin Q, Luo F.Effects of non-starch polysaccharides on inflammatory bowel disease[J]. International Journal of Molecular Sciences, 2017, 18(7):1372. [39] 王金全, 蔡辉益, 等. 小麦日粮NSP和木聚糖酶对肉仔鸡肠道微生物区系的影响[J]. 饲料工业, 2004, 25(8):15-19. [40] 贺永惠, 王清华, 等. 小麦可溶性非淀粉多糖对大鼠肠道形态与功能的影响[J]. 饲料工业, 2010, 31(17):13-15. [41] Bao YM, Choct M.Dietary NSP nutrition and intestinal immune system for broiler chickens[J]. World’s Poultry Science Journal, 2010, 66(3):511-518. [42] Savory CJ.Enzyme supplementation, degradation and metabolism of three U-14 C-labelled cell-wall substrates in the fowl[J]. British Journal of Nutrition, 1992, 67(1):91-102. [43] Gibson GR, Willems A, Reading S, et al.Fermentation of non-digestible oligosaccharides by human colonic bacteria[J]. Proceedings of the Nutrition Society, 1996, 55(3):899-912. [44] Hillman K.Manipulation of the intestinal microflora for improved health and growth in pigs[J]. Proceedings of the UK Branch of World’s Poultry Science Association, Scarborough, UK, 1999:59-61. [45] Youngblut ND, Reischer GH, Walters W, et al.Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades[J]. Nature Communications, 2019, 10(1):2200-2214. [46] Pluske JR, Kim JC, McDonald DE, et al. Non-starch polysacchar-ides in the diets of young weaned piglets[J]. The Weaner Pig:Nutrition and Management, 2001, (1):81-112. [47] Knudsen KEB, Hedemann MS, Lrke HN.The role of carbohydrates in intestinal health of pigs[J]. Animal Feed Science and Technology, 2012, 173(1-2):41-53. [48] 吴维达, 解竞静, 张宏福. 不同日粮纤维对生长猪养分消化率和肠道结构形态的影响[J]. 畜牧与兽医, 2016, 48(6):57-60. [49] Stephen AM, Champ MMJ, Cloran SJ, et al.Dietary fibre in europe:current state of knowledge on definitions, sources, recommendations, intakes and relationships to health[J]. Nutrition Research Reviews, 2017, 30(2):149-190. [50] McRorie JJW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1:What to look for and how to recommend an effective fiber therapy[J]. Nutrition Today, 2015, 50(2):82. [51] Elleuch M, Bedigian D, Roiseux O, et al.Dietary fibre and fibre-rich by-products of food processing:Characterisation, technological functionality and commercial applications:A review[J]. Food Chemistry, 2011, 124(2):411-421. [52] Dhingra D, Michael M, Rajput H, et al.Dietary fibre in foods:a review[J]. Journal of Food Science and Technology, 2012, 49(3):255-266. [53] Kyogashima M, Ginsburg V, Krivan HC.Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl-GM3 found in piglet small intestine[J]. Archives of Biochemistry and Biophysics, 1989, 270(1):391-397. [54] 张文俊, 贺建华. 仔猪肠道微生态环境的调控[J]. 动物营养学报, 2010, 22(5), 1181-1185. [55] Freire JPB, Guerreiro AJG, Cunha LF, et al.Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet[J]. Animal Feed Science and Technology, 2000, 87(1-2):71-83. [56] Malkki Y.Physical properties of dietary fiber as keys to physiological functions[J]. Cereal Foods World, 2001, 46(5):196-199. [57] Scala J.The physiological effects of dietary fiber[M]. American Chemical Society, 1975. [58] Chen H, Mao X, et al.Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets [J]. British Journal of Nutrition, 2013, 110(10):1837-1848. [59] Chen H, Mao XB, Che LQ, et al.Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs[J]. Animal Feed Science and Technology, 2014, 195(9):101-111. [60] 于藏游. 不同纤维原料非淀粉多糖组分的测定及其对断奶仔猪生长性能、消化率和粪中菌群的影响[D]. 北京:中国农业大学, 2015. [61] Karr-Lilienthal LK, Kadzere CT, Grieshop CM, et al.Chemical and nutritional properties of soybean carbohydrates as related to nonruminants:A review[J]. Livestock Production Science, 2005, 97(1):1-12. [62] Moore WE, Moore LV, Cato EP, et al.Effect of high-fiber and high-oil diets on the fecal flora of swine[J]. Appl Environ Microbiol, 1987, 53(7):1638-1644. [63] Angkanaporn K, Choct M, Bryden WL, et al.Effects of wheat pentosans on endogenous amino acid losses in chickens[J]. Journal of the Science of Food and Agriculture, 1994, 66(3):399-404. [64] Choct M, Hughes RJ, Wang J, et al.Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J]. British Poultry Science, 1996, 37(3):609-621. [65] O’Grady J, O’Connor EM, Shanahan F. Dietary fibre in the era of microbiome science[J]. Alimentary Pharmacology & Therapeutics, 2019, 49(5):506-515. [66] 龚敏. 小麦非淀粉多糖对断奶仔猪肠道菌群区系及糖转运载体的影响研究[D]. 南昌:南昌大学, 2011. [67] 高阳, 周虚, 于佳鑫, 等. 非淀粉多糖酶对生长育肥猪生长性能、胴体性状和肉品质的影响[J]. 中国兽医学报, 2014(5):138-142. [68] Varel VH, Pond WG, Pekas JC, et al.Influence of high-fiber diet on bacterial populations in intestinal tracts of obese and lean genotype pigs[J]. Applied and Environmental Microbiology, 1982, 44(1):107-112. [69] Castillo M, Martín-Orúe SM, Anguita M, et al.Adaptation of gut microbiota to corn physical structure and different types of dietary fibre[J]. Livestock Science, 2007, 109(1-3):149-152. [70] 苗德武. 初产母猪产死胎原因及防范[J]. 四川畜牧兽医, 2018(1):54-55. [71] 王小伟, 陈庆莲, 等. 饲粮中添加天然木质纤维和NCG对妊娠母猪繁殖性能的影响[J]. 饲料研究, 2019(8):21-25. [72] 刘红宾. 母猪微生物垂直传递影响仔猪肠道的微生物定植与功能发育[D]. 北京:中国农业大学, 2018. [73] Sonnenburg ED, Smits SA, Tikhonov M, et al.Diet-induced extinctions in the gut microbiota compound over generations[J]. Nature, 2016, 529(7585):212. [74] Ng KM, Aranda-Díaz A, Tropini C, et al.Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs[J]. Cell Host & Microbe, 2019, 26(5), 650-665. |
[1] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[2] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[3] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[4] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[5] | 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J]. 生物技术通报, 2023, 39(4): 187-200. |
[6] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[7] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[8] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[9] | 杨俊钊, 张新蕊, 孙清扬, 郑菲. Loop B3对GH7内切纤维素酶功能的影响机制[J]. 生物技术通报, 2023, 39(10): 281-291. |
[10] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[11] | 张开平, 刘燕丽, 涂绵亮, 李继伟, 吴文标. 烟曲霉A-16产纤维素酶工艺优化及酶学特性[J]. 生物技术通报, 2022, 38(9): 215-225. |
[12] | 王松, 简晓平, 潘婉舒, 张永光, 王涛, 游玲. 玉米小曲酒糟发酵饲料对育肥猪肠道菌群的影响[J]. 生物技术通报, 2022, 38(9): 248-257. |
[13] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[14] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[15] | 李虹仪, 彭国良, 肖正中, 张茂. 调控猪ETV5基因miRNA的筛选鉴定[J]. 生物技术通报, 2022, 38(5): 169-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||