生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 50-57.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0373
收稿日期:
2023-04-19
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
华进联,男,博士,研究员,研究方向:干细胞与胚胎工程;E-mail: jinlianhua@nwsuaf.edu.cn作者简介:
李双喜,男,博士研究生,研究方向:干细胞与胚胎工程;E-mail: lsx@126.com
基金资助:
LI Shuang-xi(), HUA Jin-lian()
Received:
2023-04-19
Published:
2023-10-26
Online:
2023-11-28
摘要:
猪繁殖与呼吸障碍综合征是由猪繁殖与呼吸障碍综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)引起的一种病毒性传染病。该病是影响我国生猪产业健康发展的最重要的三大疫病之一。目前对于该病的防控主要依赖于养殖场内外部生物安全体系,采取合理措施降低病毒的污染,切断病毒传播途径。从保护易感动物的角度而言,抗病育种也是疫病防控的重大策略之一。近年来,随着基因编辑技术的发展和成熟,分子育种作为猪抗病育种的核心技术,已显示出其独特的优势。国内外多个研究团队已利用分子育种技术在抗PRRS育种方面取得很多突破性进展。本文以PRRSV受体为切入点,综述当前猪抗PRRS育种的研究现状,以期为PRRS的防控和猪的抗病育种研究提供参考和线索。
李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57.
LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs[J]. Biotechnology Bulletin, 2023, 39(10): 50-57.
编辑位点 Editing site | 编辑类型 Editing type | CD163分子表达情况 Expressing situation of CD163 | 对PRRSV毒株的易感性 Susceptibility to PRRSV strains | 体外实验 In vitro | 体内实验 In vivo | 参考文献 Reference |
---|---|---|---|---|---|---|
猪源CD163 分子第7外显子 | 插入或缺失 | 对基因2型毒株不易感 | 猪 | [ | ||
未检测到 | 对基因1型和2型毒株不易感 | PAMs | 猪 | [ | ||
人源类CD163蛋白SRCR8结构域编码基因替换猪源CD163分子第7外显子 | 表达嵌合CD163分子 | 对基因1型毒株不易感,对基因2型毒株易感 | PAMs | 猪 | [ | |
对高致病性毒株不易感 | 猪 | [ | ||||
插入或缺失 | 表达缺失SRCR5结构域的CD163 | 肺泡巨噬细胞(PAMs)和集落刺激因子1刺激的外周血单核细胞(PMMs)对基因I型第1、2和3亚型毒株不易感,PMMs对基因II型毒株不易感 | PAMs和PMMs | [ | ||
表达缺失SRCR5结构域的CD163 | 对基因1型第2亚型的高致病性毒株不易感 | 猪 | [ | |||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ | |||
表达截短的CD163蛋白(SRCR5结构域缺失41aa,缺失区域包含病毒受体结合位点) | 对基因2型毒株JXA1和MY不易感 | PAMs | 猪 | [ | ||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ |
表1 以CD163为靶标的基因编辑猪抗PRRS的主要进展
Table 1 Advances in anti-PRRS gene-editing pigs targeting CD163
编辑位点 Editing site | 编辑类型 Editing type | CD163分子表达情况 Expressing situation of CD163 | 对PRRSV毒株的易感性 Susceptibility to PRRSV strains | 体外实验 In vitro | 体内实验 In vivo | 参考文献 Reference |
---|---|---|---|---|---|---|
猪源CD163 分子第7外显子 | 插入或缺失 | 对基因2型毒株不易感 | 猪 | [ | ||
未检测到 | 对基因1型和2型毒株不易感 | PAMs | 猪 | [ | ||
人源类CD163蛋白SRCR8结构域编码基因替换猪源CD163分子第7外显子 | 表达嵌合CD163分子 | 对基因1型毒株不易感,对基因2型毒株易感 | PAMs | 猪 | [ | |
对高致病性毒株不易感 | 猪 | [ | ||||
插入或缺失 | 表达缺失SRCR5结构域的CD163 | 肺泡巨噬细胞(PAMs)和集落刺激因子1刺激的外周血单核细胞(PMMs)对基因I型第1、2和3亚型毒株不易感,PMMs对基因II型毒株不易感 | PAMs和PMMs | [ | ||
表达缺失SRCR5结构域的CD163 | 对基因1型第2亚型的高致病性毒株不易感 | 猪 | [ | |||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ | |||
表达截短的CD163蛋白(SRCR5结构域缺失41aa,缺失区域包含病毒受体结合位点) | 对基因2型毒株JXA1和MY不易感 | PAMs | 猪 | [ | ||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ |
[1] | 刘小红, 陈瑶生. 2021年生猪产业发展状况、未来发展趋势与建议[J]. 中国畜牧杂志, 2022, 58(3): 204-209. |
Liu XH, Chen YS. Development status, future development trend and suggestions of pig industry in 2021[J]. Chin J Anim Sci, 2022, 58(3): 204-209. | |
[2] |
Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus[J]. Vet Q, 1991, 13(3): 121-130.
doi: 10.1080/01652176.1991.9694296 URL |
[3] |
Benfield DA, Nelson E, Collins JE, et al. Characterization of swine infertility and respiratory syndrome(SIRS)virus(isolate ATCC VR-2332)[J]. J Vet Diagn Invest, 1992, 4(2): 127-133.
doi: 10.1177/104063879200400202 pmid: 1616976 |
[4] |
Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents[J]. J Virol, 1999, 73(1): 270-280.
doi: 10.1128/JVI.73.1.270-280.1999 pmid: 9847330 |
[5] | The International Committee on Taxonomy of VirusesICTV. Virus taxonomy. 2020. |
[6] | 郭宝清, 陈章水, 刘文兴, 等. 从疑似PRRS流产胎儿分离PRRSV的研究[J]. 中国畜禽传染病, 1996, 18(2): 1-5. |
Guo BQ, Chen ZS, Liu WX, et al. Isolation and identification of porcine reproductory and respiratory syndrome(PRRS)virus from aborted fetuses suspected of PRRS[J]. Chin J Prev Vet Med, 1996, 18(2): 1-5. | |
[7] | 杨汉春, 管山红, 尹晓敏, 等. 猪繁殖与呼吸综合征病毒的分离与初步鉴定[J]. 中国兽医杂志, 1997, 33(10): 9-10. |
Yang HC, Guan SH, Yin XM, et al. Isolation and preliminary identification of porcine reproductive and respiratory syndrome virus[J]. Chin J Vet Med, 1997, 33(10): 9-10. | |
[8] |
Gao ZQ, Guo X, Yang HC. Genomic characterization of two Chinese isolates of porcine respiratory and reproductive syndrome virus[J]. Arch Virol, 2004, 149(7): 1341-1351.
pmid: 15221535 |
[9] |
Zhou L, Chen SX, Zhang JL, et al. Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China[J]. Virus Res, 2009, 145(1): 97-105.
doi: 10.1016/j.virusres.2009.06.014 pmid: 19559739 |
[10] |
Feng YJ, Zhao TZ, Nguyen T, et al. Porcine respiratory and reproductive syndrome virus variants, Vietnam and China, 2007[J]. Emerg Infect Dis, 2008, 14(11): 1774-1776.
doi: 10.3201/eid1411.071676 pmid: 18976568 |
[11] |
Zhou L, Wang ZC, Ding YP, et al. NADC30-like strain of porcine reproductive and respiratory syndrome virus, China[J]. Emerg Infect Dis, 2015, 21(12): 2256-2257.
doi: 10.3201/eid2112.150360 pmid: 26584305 |
[12] |
Zhao K, Ye C, Chang XB, et al. Importation and recombination are responsible for the latest emergence of highly pathogenic porcine reproductive and respiratory syndrome virus in China[J]. J Virol, 2015, 89(20): 10712-10716.
doi: 10.1128/JVI.01446-15 pmid: 26246582 |
[13] |
Anderson TK, Lager KM, et al. Porcine reproductive and respiratory disease virus: evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity[J]. Virology, 2018, 513: 168-179.
doi: S0042-6822(17)30345-8 pmid: 29096159 |
[14] |
Zhang HL, Zhang WL, Xiang LR, et al. Emergence of novel porcine reproductive and respiratory syndrome viruses(ORF5 RFLP 1-7-4 viruses)in China[J]. Vet Microbiol, 2018, 222: 105-108.
doi: 10.1016/j.vetmic.2018.06.017 URL |
[15] |
Xu H, Li C, Li WS, et al. Novel characteristics of Chinese NADC34-like PRRSV during 2020-2021[J]. Transbound Emerg Dis, 2022, 69(5): e3215-e3224.
doi: 10.1111/tbed.14485 pmid: 35182461 |
[16] |
Xu H, Song SJ, Zhao J, et al. A potential endemic strain in China: NADC34-like porcine reproductive and respiratory syndrome virus[J]. Transbound Emerg Dis, 2020, 67(4): 1730-1738.
doi: 10.1111/tbed.13508 pmid: 32037673 |
[17] |
Yu Y, Zhang QY, Cao Z, et al. Recent advances in porcine reproductive and respiratory syndrome virus NADC30-like research in China: molecular characterization, pathogenicity, and control[J]. Front Microbiol, 2022, 12: 791313.
doi: 10.3389/fmicb.2021.791313 URL |
[18] |
Zhou L, Yang BN, Xu L, et al. Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like[J]. Vet Microbiol, 2017, 207: 108-116.
doi: S0378-1135(17)30333-4 pmid: 28757009 |
[19] | 杨汉春. 猪场蓝耳病的流行现状与防控对策[J]. 兽医导刊, 2021(1): 7. |
Yang HC. Epidemic situation and prevention and control countermeasures of blue ear disease in pig farms[J]. Vet Orientat, 2021(1): 7. | |
[20] |
Geurts AM, Moreno C. Zinc-finger nucleases: new strategies to target the rat genome[J]. Clin Sci, 2010, 119(8): 303-311.
doi: 10.1042/CS20100201 URL |
[21] | Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing[J]. Nat Rev Mol Cell Biol, 2013, 14(1): 49-55. |
[22] |
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications[J]. Nat Rev Mol Cell Biol, 2019, 20(8): 490-507.
doi: 10.1038/s41580-019-0131-5 |
[23] |
Prather RS, Rowland RRR, Ewen C, et al. An intact sialoadhesin(Sn/SIGLEC1/CD169)is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus[J]. J Virol, 2013, 87(17): 9538-9546.
doi: 10.1128/JVI.00177-13 URL |
[24] | Liu SS, Zhang CQ, Maimela NR, et al. Molecular and clinical characterization of CD163 expression via large-scale analysis in glioma[J]. Oncoimmunology, 2019, 8(7): 1601478. |
[25] | Wells KD, Bardot R, Whitworth KM, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J]. J Virol, 2017, 91(2): e01521-e01516. |
[26] |
Kristiansen M, Graversen JH, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor[J]. Nature, 2001, 409(6817): 198-201.
doi: 10.1038/35051594 |
[27] |
Andersen CBF, Torvund-Jensen M, Nielsen MJ, et al. Structure of the haptoglobin-haemoglobin complex[J]. Nature, 2012, 489(7416): 456-459.
doi: 10.1038/nature11369 |
[31] |
Polfliet MMJ, Fabriek BO, Daniëls WP, et al. The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production[J]. Immunobiology, 2006, 211(6/7/8): 419-425.
doi: 10.1016/j.imbio.2006.05.015 URL |
[32] |
Calvert JG, Slade DE, Shields SL, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J]. J Virol, 2007, 81(14): 7371-7379.
doi: 10.1128/JVI.00513-07 pmid: 17494075 |
[33] |
Van Gorp H, Van Breedam W, Van Doorsselaere J, et al. Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus[J]. J Virol, 2010, 84(6): 3101-3105.
doi: 10.1128/JVI.02093-09 pmid: 20032174 |
[34] | Ma HF, Jiang LG, Qiao SL, et al. The crystal structure of the fifth scavenger receptor cysteine-rich domain of porcine CD163 reveals an important residue involved in porcine reproductive and respiratory syndrome virus infection[J]. J Virol, 2017, 91(3): e01897-e01816. |
[35] | Wei X, Li R, Qiao SL, et al. Porcine reproductive and respiratory syndrome virus utilizes viral apoptotic mimicry as an alternative pathway to infect host cells[J]. J Virol, 2020, 94(17): e00709-e00720. |
[36] |
Whitworth KM, Rowland RRR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34(1): 20-22.
doi: 10.1038/nbt.3434 pmid: 26641533 |
[37] |
Chen JY, Wang HT, Bai JH, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. Int J Biol Sci, 2019, 15(2): 481-492.
doi: 10.7150/ijbs.25862 URL |
[38] | Burkard C, Opriessnig T, Mileham AJ, et al. Erratum for burkard et Al., “pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection”[J]. J Virol, 2020, 94(15): e00951-e00920. |
[39] |
Burkard C, Lillico SG, Reid E, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13(2): e1006206.
doi: 10.1371/journal.ppat.1006206 URL |
[40] |
Yang H, Zhang J, Zhang X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Res, 2018, 151: 63-70.
doi: 10.1016/j.antiviral.2018.01.004 URL |
[41] |
Guo CH, Wang M, Zhu ZB, et al. Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J]. Front Immunol, 2019, 10: 1846.
doi: 10.3389/fimmu.2019.01846 pmid: 31440241 |
[42] |
Xu K, Zhou YR, Mu YL, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9: e57132.
doi: 10.7554/eLife.57132 URL |
[43] | 王金玉. STX10等基因敲除及其对PRRSV和PEDV增殖抑制作用的研究[D]. 武汉: 华中农业大学, 2021. |
Wang JY. The knockout of STX10 and other genes and their inhibiting effect on the replication of PRRSV and PEDV[D]. Wuhan: Huazhong Agricultural University, 2021. | |
[44] |
Xu K, Zhang XL, Liu ZG, et al. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection[J]. Sci China Life Sci, 2022, 65(8): 1535-1546.
doi: 10.1007/s11427-021-2058-2 pmid: 35122622 |
[45] |
Jin Q, Liu XY, Zhuang ZP, et al. Doxycycline-dependent Cas9-expressing pig resources for conditional in vivo gene nullification and activation[J]. Genome Biol, 2023, 24(1): 8.
doi: 10.1186/s13059-023-02851-x |
[46] |
Prather RS, Wells KD, Whitworth KM, et al. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus(PRRSV)[J]. Sci Rep, 2017, 7(1): 13371.
doi: 10.1038/s41598-017-13794-2 |
[47] |
McCleary S, Strong R, McCarthy RR, et al. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus[J]. Sci Rep, 2020, 10(1): 8951.
doi: 10.1038/s41598-020-65808-1 pmid: 32488046 |
[48] |
Xie ZC, Pang DX, Yuan HM, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathog, 2018, 14(12): e1007193.
doi: 10.1371/journal.ppat.1007193 URL |
[49] | 陆超. 基于猪miR-17-92簇制备抗CSFV/PEDV基因修饰猪的研究[D]. 长春: 吉林大学, 2019. |
Lu C. Preparation of anti-CSFV/PEDV genetically modified pigs based on porcine miR-17-92 cluster[D]. Changchun: Jilin University, 2019. | |
[28] |
Nielsen MJ, Madsen M, Møller HJ, et al. The macrophage scavenger receptor CD163: endocytic properties of cytoplasmic tail variants[J]. J Leukoc Biol, 2006, 79(4): 837-845.
doi: 10.1189/jlb.1005602 URL |
[29] |
Moreno JA, Muñoz-García B, Martín-Ventura JL, et al. The CD163-expressing macrophages recognize and internalize TWEAK: potential consequences in atherosclerosis[J]. Atherosclerosis, 2009, 207(1): 103-110.
doi: 10.1016/j.atherosclerosis.2009.04.033 pmid: 19473660 |
[30] |
Fabriek BO, Polfliet MMJ, Vloet RPM, et al. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor[J]. Blood, 2007, 109(12): 5223-5229.
doi: 10.1182/blood-2006-08-036467 pmid: 17353345 |
[50] | 杨昕淳, 吴晓龙, 华进联. 诱导多能干细胞向巨噬细胞分化研究进展[J]. 生物工程学报, 2021, 37(11): 4001-4014. |
Yang XC, Wu XL, Hua JL. Induction and differentiation of induced pluripotent stem cells into macrophages: a review[J]. Chin J Biotechnol, 2021, 37(11): 4001-4014. | |
[51] | 岳威, 张炬庆, 吴晓龙, 等. 携带CD163报告载体的猪诱导多能干细胞株的建立[J]. 生物工程学报, 2023, 39(1): 192-203. |
Yue W, Zhang JQ, Wu XL, et al. Development of porcine induced pluripotent stem cells with a CD163 reporter system[J]. Chin J Biotechnol, 2023, 39(1): 192-203. | |
[52] | 岳威, 张炬庆, 杨昕淳, 等. 超表达CD163的猪诱导性多能干细胞系构建[J]. 农业生物技术学报, 2022, 30(10): 2036-2044. |
Yue W, Zhang JQ, Yang XC, et al. Construction of porcine(Sus scrofa)induced pluripotent stem cell lines with over-expression of CD163[J]. J Agric Biotechnol, 2022, 30(10): 2036-2044. |
[1] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[4] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[5] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[6] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[7] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[8] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[9] | 王松, 简晓平, 潘婉舒, 张永光, 王涛, 游玲. 玉米小曲酒糟发酵饲料对育肥猪肠道菌群的影响[J]. 生物技术通报, 2022, 38(9): 248-257. |
[10] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[11] | 李虹仪, 彭国良, 肖正中, 张茂. 调控猪ETV5基因miRNA的筛选鉴定[J]. 生物技术通报, 2022, 38(5): 169-174. |
[12] | Olalekan Amoo, 胡利民, 翟云孤, 范楚川, 周永明. 利用基因编辑技术研究BRANCHED1参与油菜分枝过程的调控[J]. 生物技术通报, 2022, 38(4): 97-105. |
[13] | 丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172. |
[14] | 燕炯, 冯晨毅, 高学坤, 许祥, 杨佳敏, 陈朝阳. 基于CRISPR/Cas9技术构建Plin1基因敲除小鼠模型及表型分析[J]. 生物技术通报, 2022, 38(3): 173-180. |
[15] | 成温玉, 张博昕, 赵鸿远, 陈艳, 谢娟平. 天然产物抗猪流行性腹泻病毒研究进展[J]. 生物技术通报, 2022, 38(12): 127-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||