生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 73-87.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1240
张晶1,2,3(), 张浩睿4,5, 曹云1,2,3, 黄红英1,2,3(), 曲萍1,2,3, 张志萍4,5()
收稿日期:
2022-10-09
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
张志萍,女,博士,副教授,研究方向:生物质能源开发利用;E-mail: zhangzhipingHAU@henau.edu.cn;作者简介:
张晶,女,博士,助理研究员,研究方向:农业废弃物资源化利用;E-mail: zhangjing@jaas.ac.cn
基金资助:
ZHANG Jing1,2,3(), ZHANG Hao-rui4,5, CAO Yun1,2,3, HUANG Hong-ying1,2,3(), QU Ping1,2,3, ZHANG Zhi-ping4,5()
Received:
2022-10-09
Published:
2023-06-26
Online:
2023-07-07
摘要:
纤维素是地球上含量丰富的可再生资源,对其进行充分利用可有效缓解日益严峻的能源和环境问题。纤维素酶是纤维素生物转化的关键,其催化效果决定了纤维素能源化利用的商业价值。鉴于常规的中温酶很难适应工业化生产中的极端条件,来源于嗜热微生物的纤维素酶引起了科研人员关注。结合国内外研究现状,综述了嗜热纤维素降解菌的种类、纤维素酶类型以及纤维素降解方式,讨论了嗜热纤维素酶在工业生产中的作用及应用现状。最后提出了嗜热纤维素酶大规模应用的技术瓶颈和今后的研究重点,展望了嗜热纤维素酶的商业化前景。
张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87.
ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation[J]. Biotechnology Bulletin, 2023, 39(6): 73-87.
菌种名称(现行命名法) Species(present nomenclature) | 其他名称 Other names | 培养温度 Culture temperature/℃ | 纤维素酶类型 Type of cellulase | 参考文献 References |
---|---|---|---|---|
Chaetomium thermophilum | Chaetomium thermophile | 50 | 内切葡聚糖酶、外切葡聚糖酶、 β-葡萄糖苷酶 | [ |
Melanocarpus albomyces | Myriococcum albomyces, Thielavia albomyces | 45 | 内切葡聚糖酶、纤维二糖水解酶 | [ |
Malbranchea cinnamomea | Trichothecium cinnamomeum, Thermoidium sulfureum, Malbranchea pulchella var.sulfurea | 45 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ |
Mycothermus thermophilus | Torula thermophila Scytalidium thermophilum | 45 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ |
Rasamsonia emersonii | Talaromyces emersonii | 45 | 内切葡聚糖酶、外切葡聚糖酶、 β-葡萄糖苷酶 | [ |
Thermoascus aurantiacus | 50 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ | |
Thermomyces lanuginosus | Sepedonium lanuginosum Monotospora lanuginosa Humicola lanuginosa | 50 | 内切葡聚糖酶、外切葡聚糖酶、 β-葡萄糖苷酶 | [ |
表1 常见嗜热纤维素降解真菌种类
Table 1 Taxonomic status of common thermophilic cellulolytic fungi
菌种名称(现行命名法) Species(present nomenclature) | 其他名称 Other names | 培养温度 Culture temperature/℃ | 纤维素酶类型 Type of cellulase | 参考文献 References |
---|---|---|---|---|
Chaetomium thermophilum | Chaetomium thermophile | 50 | 内切葡聚糖酶、外切葡聚糖酶、 β-葡萄糖苷酶 | [ |
Melanocarpus albomyces | Myriococcum albomyces, Thielavia albomyces | 45 | 内切葡聚糖酶、纤维二糖水解酶 | [ |
Malbranchea cinnamomea | Trichothecium cinnamomeum, Thermoidium sulfureum, Malbranchea pulchella var.sulfurea | 45 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ |
Mycothermus thermophilus | Torula thermophila Scytalidium thermophilum | 45 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ |
Rasamsonia emersonii | Talaromyces emersonii | 45 | 内切葡聚糖酶、外切葡聚糖酶、 β-葡萄糖苷酶 | [ |
Thermoascus aurantiacus | 50 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ | |
Thermomyces lanuginosus | Sepedonium lanuginosum Monotospora lanuginosa Humicola lanuginosa | 50 | 内切葡聚糖酶、外切葡聚糖酶、 β-葡萄糖苷酶 | [ |
菌种名称Species | 培养温度Culture temperature/℃ | 纤维素酶类型Type of cellulase | 参考文献Reference |
---|---|---|---|
Clostridium thermocellum | 60 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Caldicellulosiruptor saccharolyticus | 70 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Geobacillus thermoleovorans | 60 | 内切葡聚糖酶 | [ |
Acidothermus cellulolyticus | 55 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Alicyclobacillus acidocaldarius | 60 | 内切葡聚糖酶 | [ |
Caldibacillus cellulovorans | 70 | 内切葡聚糖酶 | [ |
表2 常见嗜热纤维素降解细菌种类
Table 2 Taxonomic status of thermophilic cellulolytic bacteria
菌种名称Species | 培养温度Culture temperature/℃ | 纤维素酶类型Type of cellulase | 参考文献Reference |
---|---|---|---|
Clostridium thermocellum | 60 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Caldicellulosiruptor saccharolyticus | 70 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Geobacillus thermoleovorans | 60 | 内切葡聚糖酶 | [ |
Acidothermus cellulolyticus | 55 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Alicyclobacillus acidocaldarius | 60 | 内切葡聚糖酶 | [ |
Caldibacillus cellulovorans | 70 | 内切葡聚糖酶 | [ |
菌种名称Species | 培养温度Culture temperature /℃ | 纤维素酶类型Type of cellulase | 参考文献References |
---|---|---|---|
Thermomonospora curvata | 52 | 内切葡聚糖酶、β-葡萄糖苷酶 | [ |
Thermobispora bispora | 58 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ |
Streptomyces thermoalkaliphilus | 50 | 内切葡聚糖酶 | [ |
Thermobifida fusca | 50 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Thermobifida halotolerans | 45 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Thermoactinospora rubra | 50 | 内切葡聚糖酶、β-葡萄糖苷酶 | [ |
表3 常见嗜热纤维素降解放线菌种类
Table 3 Taxonomic status of thermophilic cellulolytic actinomyces
菌种名称Species | 培养温度Culture temperature /℃ | 纤维素酶类型Type of cellulase | 参考文献References |
---|---|---|---|
Thermomonospora curvata | 52 | 内切葡聚糖酶、β-葡萄糖苷酶 | [ |
Thermobispora bispora | 58 | 内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶 | [ |
Streptomyces thermoalkaliphilus | 50 | 内切葡聚糖酶 | [ |
Thermobifida fusca | 50 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Thermobifida halotolerans | 45 | 内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶 | [ |
Thermoactinospora rubra | 50 | 内切葡聚糖酶、β-葡萄糖苷酶 | [ |
来源菌株Microorganism | 酶的名称Enzyme | 酶的结构Modules | 酶的活性Activity | 参考文献Reference |
---|---|---|---|---|
Rasamsonia emersonii | CBHII | CBM1, GH6 | 纤维二糖水解酶 | [ |
CBHIB | GH7 | 纤维二糖水解酶 | [ | |
Chaetomium thermophilum | CBH1 | GH7, CBM1 | 纤维二糖水解酶 | [ |
CBH2 | CBM1, GH6 | 纤维二糖水解酶 | [ | |
CBH3 | GH7 | 纤维二糖水解酶 | [ | |
Thermoascus aurantiacus | CBH1 | GH7 | 纤维二糖水解酶 | [ |
EGI | GH5 | 内切-β-1,4-葡聚糖酶 | [ | |
Thermobifida fusca | Cel5A | CBM2, GH5 | 内切-β-1,4-葡聚糖酶 | [ |
Cel6A | GH6, CBM2 | 内切-β-1,4-葡聚糖酶 | [ | |
Cel9A | GH9, CBM3, CBM2 | 内切-β-1,4-葡聚糖酶 | [ | |
Cel48A | CBM2, GH48 | 外切-β-1,4-葡聚糖酶 | [ | |
Thermobifida halotolerans | Cel5A | CBM2, GH5 | 内切-β-1,4-葡聚糖酶 | [ |
Thermobispora bispora | BglB | GH1 | β-葡萄糖苷酶 | [ |
Acidothermus cellulolyticus | Cel5A | GH5, CBM2 | 内切-β-1,4-葡聚糖酶 | [ |
Alicyclobacillus acidocaldarius | CelA | GH9 | 内切-β-1,4-葡聚糖酶 | [ |
Rhodothermus marinus | CelA | GH12 | 内切-β-1,4-葡聚糖酶 | [ |
Caldicellulosiruptor bescii | CelA | GH9a, CBM3, CBM3, CBM3, GH48b | a内切-β-1,4-葡聚糖酶,b纤维二糖水解酶 | [ |
Geobacillus sp. | CelA | GH5 | 内切-β-1,4-葡聚糖酶 | [ |
表4 来源不同嗜热微生物的嗜热纤维素酶及其结构特征
Table 4 Thermophilic cellulases from various thermophilic microorganism and their structural characteristics
来源菌株Microorganism | 酶的名称Enzyme | 酶的结构Modules | 酶的活性Activity | 参考文献Reference |
---|---|---|---|---|
Rasamsonia emersonii | CBHII | CBM1, GH6 | 纤维二糖水解酶 | [ |
CBHIB | GH7 | 纤维二糖水解酶 | [ | |
Chaetomium thermophilum | CBH1 | GH7, CBM1 | 纤维二糖水解酶 | [ |
CBH2 | CBM1, GH6 | 纤维二糖水解酶 | [ | |
CBH3 | GH7 | 纤维二糖水解酶 | [ | |
Thermoascus aurantiacus | CBH1 | GH7 | 纤维二糖水解酶 | [ |
EGI | GH5 | 内切-β-1,4-葡聚糖酶 | [ | |
Thermobifida fusca | Cel5A | CBM2, GH5 | 内切-β-1,4-葡聚糖酶 | [ |
Cel6A | GH6, CBM2 | 内切-β-1,4-葡聚糖酶 | [ | |
Cel9A | GH9, CBM3, CBM2 | 内切-β-1,4-葡聚糖酶 | [ | |
Cel48A | CBM2, GH48 | 外切-β-1,4-葡聚糖酶 | [ | |
Thermobifida halotolerans | Cel5A | CBM2, GH5 | 内切-β-1,4-葡聚糖酶 | [ |
Thermobispora bispora | BglB | GH1 | β-葡萄糖苷酶 | [ |
Acidothermus cellulolyticus | Cel5A | GH5, CBM2 | 内切-β-1,4-葡聚糖酶 | [ |
Alicyclobacillus acidocaldarius | CelA | GH9 | 内切-β-1,4-葡聚糖酶 | [ |
Rhodothermus marinus | CelA | GH12 | 内切-β-1,4-葡聚糖酶 | [ |
Caldicellulosiruptor bescii | CelA | GH9a, CBM3, CBM3, CBM3, GH48b | a内切-β-1,4-葡聚糖酶,b纤维二糖水解酶 | [ |
Geobacillus sp. | CelA | GH5 | 内切-β-1,4-葡聚糖酶 | [ |
[1] |
Himmel ME, Xu Q, Luo Y, et al. Microbial enzyme systems for biomass conversion: emerging paradigms[J]. Biofuels, 2010, 1(2): 323-341.
doi: 10.4155/bfs.09.25 URL |
[2] |
Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66: 506-577.
doi: 10.1128/MMBR.66.3.506-577.2002 pmid: 12209002 |
[3] |
Rodionova MV, Poudyal RS, Tiwari I, et al. Biofuel production: challenges and opportunities[J]. Int J Hydrog Energy, 2017, 42(12): 8450-8461.
doi: 10.1016/j.ijhydene.2016.11.125 URL |
[4] |
Adsul M, Sandhu SK, Singhania RR, et al. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels[J]. Enzyme Microb Technol, 2020, 133: 109442.
doi: 10.1016/j.enzmictec.2019.109442 URL |
[5] |
Bhalla A, Bansal N, Kumar S, et al. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes[J]. Bioresour Technol, 2013, 128: 751-759.
doi: 10.1016/j.biortech.2012.10.145 URL |
[6] |
Maheshwari R, Bharadwaj G, Bhat MK. Thermophilic fungi: their physiology and enzymes[J]. Microbiol Mol Biol Rev, 2000, 64(3): 461-488.
doi: 10.1128/MMBR.64.3.461-488.2000 URL |
[7] |
Ebaid R, Wang HC, Sha C, et al. Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: a critical review[J]. J Clean Prod, 2019, 238: 117925.
doi: 10.1016/j.jclepro.2019.117925 URL |
[8] | Cooney DG, Emerson R. Thermophilic fungi: An account of their biology, activities and classification[M]. San Francisco and London: W.H. Freeman and Company, 1964. |
[9] | 宫秀杰, 钱春荣, 于洋, 等. 近年纤维素降解菌株筛选研究进展[J]. 纤维素科学与技术, 2021, 29(2): 68-77. |
Gong XJ, Qian CR, Yu Y, et al. Progress on screening of cellulose degrading strains in recent years[J]. J Cellul Sci Technol, 2021, 29(2): 68-77. | |
[10] | 李欣. 基于整合组学探究Chaetomium thermophilum木质纤维素高效降解机制[D]. 济南: 山东大学, 2020. |
Li X. Insights into the high-efficiency lignocellulose degradation mechanism of Chaetomium thermophilum based on integrated omics[D]. Jinan: Shandong University, 2020. | |
[11] |
Miettinen-Oinonen A. Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH[J]. Enzyme Microb Technol, 2004, 34(3/4): 332-341.
doi: 10.1016/j.enzmictec.2003.11.011 URL |
[12] |
Mahajan C, Basotra N, Singh S, et al. Malbranchea cinnamomea: a thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes[J]. Bioresour Technol, 2016, 200: 55-63.
doi: 10.1016/j.biortech.2015.09.113 URL |
[13] |
Basotra N, Kaur B, di Falco M, et al. Mycothermus thermophilus(Syn. Scytalidium thermophilum): repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed[J]. Bioresour Technol, 2016, 222: 413-421.
doi: 10.1016/j.biortech.2016.10.018 URL |
[14] | 安建鲁. 嗜热真菌埃默森篮状菌糖苷水解酶的功能解析[D]. 济南: 山东大学, 2021. |
An JL. Functional analysis of glycoside hydrolases from the thermophilic fungus Rasamsonia emersonii[D]. Jinan: Shandong University, 2021. | |
[15] |
McClendon SD, Batth T, Petzold CJ, et al. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions[J]. Biotechnol Biofuels, 2012, 5(1): 54.
doi: 10.1186/1754-6834-5-54 pmid: 22839529 |
[16] | 贾汇红. 疏绵状嗜热丝孢菌热稳定纤维素酶的分离纯化和基因克隆[D]. 泰安: 山东农业大学, 2007. |
Jia HH. Purification, characterization and gene cloning of cellulase from Thermomyces lanuginosus[D]. Tai'an: Shandong Agricultural University, 2007. | |
[17] | 王瑞杰. 疏绵状嗜热丝孢菌β-葡聚糖酶基因的异源表达及分析[D]. 天津: 天津科技大学, 2015. |
Wang RJ. Heterologous expression and biochemical property of Thermomyces lanuginosus β-glucanase[D]. Tianjin: Tianjin University of Science & Technology, 2015. | |
[18] | Sing, Salar R Aneja KR. Significance of thermophilic fungi in mushroom compost preparation: effect on growth and yield of Agaricus bisporus(Lange).[J]. Journal of Agricultural Technology, 2007, 3(2): 241-253. |
[19] |
Szijártó N, Siika-Aho M, Tenkanen M, et al. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces[J]. J Biotechnol, 2008, 136(3-4): 140-147.
doi: 10.1016/j.jbiotec.2008.05.010 pmid: 18635283 |
[20] |
Kiiskinen LL, Viikari L, Kruus K. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces[J]. Appl Microbiol Biotechnol, 2002, 59(2-3): 198-204.
pmid: 12111146 |
[21] | 唐小飞. 西藏热泉嗜热真菌分离鉴定、产酶及生物活性初步研究[D]. 汉中: 陕西理工大学, 2019. |
Tang XF. Preliminary study on production enzyme and biological activity form isolation and identification of thermophilic fungi in Tibetan hot spring[D]. Hanzhong: Shaanxi University of Technology, 2019. | |
[22] | 卢雨欣, 赵航轲, 唐小飞, 等. 西藏热泉1株产纤维素酶真菌的鉴定及产酶条件优化[J]. 河南农业科学, 2019, 48(10): 77-83. |
Lu YX, Zhao HK, Tang XF, et al. Identification of a cellulase producing fungus from Tibet hot spring and optimization of its enzyme production conditions[J]. J Henan Agric Sci, 2019, 48(10): 77-83. | |
[23] | 范光森, 严烨, 杨绍青, 等. 一株产木聚糖酶嗜热真菌樟绒枝霉的鉴定及其产纤维质降解酶系分析[J]. 应用与环境生物学报, 2013, 19(1): 48-53. |
Fan GS, Yan Y, Yang SQ, et al. Identification of a xylanase-producing thermophilic fungus, Malbranchea cinnamomea, and analysis of its cellulosic enzymes[J]. Chin J Appl Environ Biol, 2013, 19(1): 48-53.
doi: 10.3724/SP.J.1145.2013.00048 URL |
|
[24] |
Folan MA, Coughlan MP. The cellulase complex in the culture filtrate of the thermophyllic fungus, Talaromyces emersonii[J]. Int J Biochem, 1978, 9(10): 717-722.
doi: 10.1016/0020-711X(78)90038-1 URL |
[25] |
Tuohy MG, Walsh DJ, Murray PG, et al. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii[J]. Biochim Biophys Acta Protein Struct Mol Enzymol, 2002, 1596(2): 366-380.
doi: 10.1016/S0167-4838(01)00308-9 URL |
[26] |
Gomes I, Gomes J, Gomes DJ, et al. Simultaneous production of high activities of thermostable endoglucanase and beta-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus[J]. Appl Microbiol Biotechnol, 2000, 53(4): 461-468.
doi: 10.1007/s002530051642 pmid: 10803904 |
[27] |
Parry NJ, Beever DE, Owen E, et al. Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus[J]. Biochem J, 2001, 353(Pt 1): 117-127.
pmid: 11115405 |
[28] | 王瑞杰, Mchunu NP, 牛丹丹, 等. 疏绵状嗜热丝孢菌外切β-葡聚糖酶的基因克隆与酶学特征[J]. 微生物学通报, 2016, 43(2): 285-291. |
Wang RJ, Mchunu NP, Niu DD, et al. Gene cloning and biochemical properties of Thermomyces lanuginosus exo-β-glucanase[J]. Microbiol China, 2016, 43(2): 285-291. | |
[29] |
Felix CR, Ljungdahl LG. The cellulosome: the exocellular organelle of Clostridium[J]. Annu Rev Microbiol, 1993, 47: 791-819.
pmid: 8257116 |
[30] | Klippel B, Antranikian G. Lignocellulose converting enzymes from thermophiles[M]// Extremophiles Handbook. Tokyo: Springer, 2011: 443-474. |
[31] |
Tai SK, Lin HPP, Kuo J, et al. Isolation and characterization of a cellulolytic Geobacillus thermoleovorans T4 strain from sugar refinery wastewater[J]. Extremophiles, 2004, 8(5): 345-349.
doi: 10.1007/s00792-004-0395-2 URL |
[32] |
Barabote RD, Xie G, Leu DH, et al. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations[J]. Genome Res, 2009, 19(6): 1033-1043.
doi: 10.1101/gr.084848.108 pmid: 19270083 |
[33] |
Eckert K, Schneider E. A thermoacidophilic endoglucanase(CelB)from Alicyclobacillus acidocaldarius displays high sequence similarity to Arabinofuranosidases belonging to family 51 of glycoside hydrolases[J]. Eur J Biochem, 2003, 270(17): 3593-3602.
doi: 10.1046/j.1432-1033.2003.03744.x URL |
[34] |
Freier D, Mothershed CP, Wiegel J. Characterization of Clostridium thermocellum JW20[J]. Appl Environ Microbiol, 1988, 54(1): 204-211.
doi: 10.1128/aem.54.1.204-211.1988 URL |
[35] | 徐惠娟, 刘文欢, 樊展源, 等. 热纤梭菌转化木质纤维素产乙醇的研究进展[J]. 新能源进展, 2020, 8(1): 28-34. |
Xu HJ, Liu WH, Fan ZY, et al. Research progress on the conversion of lignocellulose to ethanol by Clostridium thermocellum[J]. Adv New Renew Energy, 2020, 8(1): 28-34. | |
[36] |
Ng TK, Zeikus JG. Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum[J]. J Bacteriol, 1982, 150(3): 1391-1399.
doi: 10.1128/jb.150.3.1391-1399.1982 pmid: 6210689 |
[37] |
Rainey FA, Donnison AM, Janssen PH, et al. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium[J]. FEMS Microbiol Lett, 1994, 120(3): 263-266.
doi: 10.1111/j.1574-6968.1994.tb07043.x pmid: 8076802 |
[38] | 孟冬冬, 张坤迪, 英瑜, 等. 极端嗜热厌氧菌Caldicellulosiruptor木质纤维素降解研究[J]. 生物加工过程, 2014, 12(1): 37-45. |
Meng DD, Zhang KD, Ying Y, et al. Research progress in lignocellulose degradation by genus Caldicellulosiruptor[J]. Chin J Bioprocess Eng, 2014, 12(1): 37-45. | |
[39] |
Rastogi G, Muppidi GL, Gurram RN, et al. Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA[J]. J Ind Microbiol Biotechnol, 2009, 36(4): 585-598.
doi: 10.1007/s10295-009-0528-9 URL |
[40] |
Assareh R, Shahbani Zahiri H, Akbari Noghabi K, et al. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws[J]. Bioresour Technol, 2012, 120: 99-105.
doi: 10.1016/j.biortech.2012.06.027 URL |
[41] |
Shiang M, Linden JC, Mohagneghi A, et al. Cellulase production by Acidothermus cellulolyticus[J]. Appl Biochem Biotechnol, 1990, 24/25(1): 223-235.
doi: 10.1007/BF02920248 URL |
[42] | Ding SY, Adney WS, Vinzant TB, et al. Glycoside hydrolase gene cluster of Acidothermus cellulolyticus[M]// ACS Symposium Series. Washington, DC: American Chemical Society, 2003: 332-360. |
[43] |
Groenewald WH, Gouws PA, Witthuhn RC. Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa[J]. Food Microbiol, 2009, 26(1): 71-76.
doi: 10.1016/j.fm.2008.07.008 pmid: 19028308 |
[44] | 柏映国. 脂环酸芽孢杆菌(Alicyclobacillus sp. A4)部分糖基水解酶研究及其基因组序列初步分析[D]. 北京: 中国农业科学院, 2010. |
Bai YG. Characterization of some glycosyl hydrolases from Alicyclobacillus sp. A4 and elementary analysis of its genome[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. | |
[45] | Huang XP. Characterization of a novel aerobic cellulolytic thermophilic bacterium and its cellulases[D]. New Zealand: University of Waikato, 1999. |
[46] |
Huang XP, Monk C. Purification and characterization of a cellulase(CMCase)from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov[J]. World J Microbiol Biotechnol, 2004, 20(1): 85-92.
doi: 10.1023/B:WIBI.0000013316.12730.e7 URL |
[47] | 张敬, 何伟宏, 唐蜀昆, 等. 云南干热环境可培养高温放线菌多样性及产纤维素酶活性评价[J]. 微生物学通报, 2013, 40(6): 1109-1120. |
Zhang J, He WH, Tang SK, et al. Diversity of culturable thermophilic actinobacteria and their producing cellulase activity in several dry-hot environments in Yunnan Province[J]. Microbiol China, 2013, 40(6): 1109-1120. | |
[48] |
Lin SB, Stutzenberger FJ. Purification and characterization of the major beta-1, 4-endoglucanase from Thermomonospora curvata[J]. J Appl Bacteriol, 1995, 79(4): 447-453.
doi: 10.1111/jam.1995.79.issue-4 URL |
[49] |
Bernier R, Stutzenberger F. Extracellular and cell-associated forms of beta-glucosidase in Thermomonospora curvata[J]. Lett Appl Microbiol, 1988, 7(4): 103-107.
doi: 10.1111/j.1472-765X.1988.tb01263.x URL |
[50] |
Bartley T, Waldron C, Eveleigh D. A cellobiohydrolase from a thermophilic actinomycete, Microbispora bispora[J]. Appl Biochem Biotechnol, 1984, 9(4): 337.
doi: 10.1007/BF02798964 URL |
[51] |
Wu H, Liu B, Ou XY, et al. Streptomyces thermoalkaliphilus sp. nov., an alkaline cellulase producing thermophilic actinomycete isolated from tropical rainforest soil[J]. Antonie Van Leeuwenhoek, 2018, 111(3): 413-422.
doi: 10.1007/s10482-017-0964-x URL |
[52] |
Posta K, Béki E, Wilson DB, et al. Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca[J]. J Basic Microbiol, 2004, 44(5): 383-399.
doi: 10.1002/(ISSN)1521-4028 URL |
[53] |
Zhang F, Zhang XM, Yin YR, et al. Cloning, expression and characterization of a novel GH5 exo/endoglucanase of Thermobifida halotolerans YIM 90462T by genome mining[J]. J Biosci Bioeng, 2015, 120(6): 644-649.
doi: 10.1016/j.jbiosc.2015.04.012 pmid: 26026381 |
[54] |
Yin YR, Sang P, Xiao M, et al. Expression and characterization of a cold-adapted, salt- and glucose-tolerant GH1 β-glucosidase obtained from Thermobifida halotolerans and its use in sugarcane bagasse hydrolysis[J]. Biomass Convers Biorefinery, 2021, 11(4): 1245-1253.
doi: 10.1007/s13399-019-00556-5 |
[55] |
Yin YR, Meng ZH, Hu QW, et al. The hybrid strategy of Thermoactinospora rubra YIM 77501T for utilizing cellulose as a carbon source at different temperatures[J]. Front Microbiol, 2017, 8: 942.
doi: 10.3389/fmicb.2017.00942 pmid: 28611745 |
[56] |
Wilson DB. Biochemistry and genetics of actinomycete cellulases[J]. Crit Rev Biotechnol, 1992, 12(1/2): 45-63.
doi: 10.3109/07388559209069187 URL |
[57] |
Wang Y, Zhang Z, Ruan J. A proposal to transfer Microbispora bispora(Lechevalier 1965)to a new genus, Thermobispora gen. nov., as Thermobispora bispora comb. nov[J]. Int J Syst Bacteriol, 1996, 46(4): 933-938.
doi: 10.1099/00207713-46-4-933 pmid: 8863419 |
[58] |
Waldron CR, Eveleigh DE. Saccharification of cellulosics by Microbispora bispora[J]. Appl Microbiol Biotechnol, 1986, 24(6): 487-492.
doi: 10.1007/BF00250328 URL |
[59] |
Zhou EM, Tang SK, Sjøholm C, et al. Thermoactinospora rubra gen. nov., sp. nov., a thermophilic actinomycete isolated from Tengchong, Yunnan Province, south-west China[J]. Antonie Van Leeuwenhoek, 2012, 102(1): 177-185.
doi: 10.1007/s10482-012-9725-z URL |
[60] |
Kim IJ, Lee HJ, Choi IG, et al. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase[J]. Appl Microbiol Biotechnol, 2014, 98(20): 8469-8480.
doi: 10.1007/s00253-014-6001-3 pmid: 25129610 |
[61] |
Koeck DE, Pechtl A, Zverlov VV, et al. Genomics of cellulolytic bacteria[J]. Curr Opin Biotechnol, 2014, 29: 171-183.
doi: 10.1016/j.copbio.2014.07.002 URL |
[62] | 欧阳嘉, 李鑫, 王向明, 等. 纤维素结合域的研究进展[J]. 生物加工过程, 2008, 6(2): 10-16. |
Ouyang J, Li X, Wang XM, et al. Advances in cellulose-binding module[J]. Chin J Bioprocess Eng, 2008, 6(2): 10-16. | |
[63] |
Murray PG, et al. Molecular cloning, transcriptional, and expression analysis of the first cellulase gene(cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product[J]. Biochem Biophys Res Commun, 2003, 301(2): 280-286.
doi: 10.1016/S0006-291X(02)03025-5 URL |
[64] |
Grassick A, Murray PG, Thompson R, et al. Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii[J]. Eur J Biochem, 2004, 271(22): 4495-4506.
pmid: 15560790 |
[65] | 刘守安, 李多川, 张燕, 等. 嗜热毛壳菌CT2纤维二糖水解酶Ⅰ在毕赤酵母中的高效表达[J]. 菌物学报, 2006, 25(2): 256-262. |
Liu SA, Li DC, Zhang Y, et al. Effective expression of Chaetomium thermophilum CT2 cellobiohydrolase I in Pichia pastoris[J]. Mycosystema, 2006, 25(2): 256-262. | |
[66] | 刘守安, 李多川, 俄世瑾, 等. 嗜热毛壳菌纤维素酶(CBHⅡ)cDNA的克隆及在毕赤酵母中的表达[J]. 生物工程学报, 2005(6):892-899. |
Liu SA, Li DC E/EiSJ, et al. Cloning and expressing of cellulase gene(cbh2)from thermophilic fungi Chaetomium thermophilum CT2[J]. Chin J Biotechnol, 2005(6):892-899. | |
[67] |
Li YL, Li H, Li AN, et al. Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris[J]. J Appl Microbiol, 2009, 106(6): 1867-1875.
doi: 10.1111/j.1365-2672.2009.04171.x pmid: 19239548 |
[68] |
Hong J, Tamaki H, Yamamoto K, et al. Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast[J]. Appl Microbiol Biotechnol, 2003, 63(1): 42-50.
pmid: 12830328 |
[69] |
Hong J, Tamaki H, Yamamoto K, et al. Cloning of a gene encoding a thermo-stable endo-beta-1, 4-glucanase from Thermoascus aurantiacus and its expression in yeast[J]. Biotechnol Lett, 2003, 25(8): 657-661.
doi: 10.1023/A:1023072311980 URL |
[70] |
Wilson DB. Studies of Thermobifida fusca plant cell wall degrading enzymes[J]. Chem Rec, 2004, 4(2): 72-82.
doi: 10.1002/tcr.20002 pmid: 15073875 |
[71] |
Wright RM, Yablonsky MD, Shalita ZP, et al. Cloning, characterization, and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable beta-glucosidase expressed in Escherichia coli[J]. Appl Environ Microbiol, 1992, 58(11): 3455-3465.
doi: 10.1128/aem.58.11.3455-3465.1992 URL |
[72] |
Eckert K, Zielinski F, Lo Leggio L, et al. Gene cloning, sequencing, and characterization of a family 9 endoglucanase(CelA)with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009[J]. Appl Microbiol Biotechnol, 2002, 60(4): 428-436.
doi: 10.1007/s00253-002-1131-4 pmid: 12466883 |
[73] |
Halldórsdóttir S, Thórólfsdóttir ET, Spilliaert R, et al. Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12[J]. Appl Microbiol Biotechnol, 1998, 49(3): 277-284.
pmid: 9581291 |
[74] |
Dam P, Kataeva I, Yang SJ, et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725[J]. Nucleic Acids Res, 2011, 39(8): 3240-3254.
doi: 10.1093/nar/gkq1281 URL |
[75] |
Ng IS, Li CW, Yeh YF, et al. A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures[J]. Extremophiles, 2009, 13(3): 425-435.
doi: 10.1007/s00792-009-0228-4 pmid: 19296197 |
[76] | 孟凡辉, 蒋绪恺, 刘琳, 等. 纤维素酶解速度的可视化表征与限制因素分析[J]. 生物化学与生物物理进展, 2015, 42(3): 201-210. |
Meng FH, Jiang XK, Liu L, et al. The visual representation for cellulase degradation velocity and the analysis for limiting factor[J]. Prog Biochem Biophys, 2015, 42(3): 201-210. | |
[77] |
Beeson WT, Phillips CM, Cate JHD, et al. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases[J]. J Am Chem Soc, 2012, 134(2): 890-892.
doi: 10.1021/ja210657t pmid: 22188218 |
[78] |
Quinlan RJ, Sweeney MD, Lo Leggio L, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components[J]. Proc Natl Acad Sci USA, 2011, 108(37): 15079-15084.
doi: 10.1073/pnas.1105776108 pmid: 21876164 |
[79] |
Tan TC, Kracher D, Gandini R, et al. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation[J]. Nat Commun, 2015, 6: 7542.
doi: 10.1038/ncomms8542 |
[80] |
Vaaje-Kolstad G, Westereng B, Horn SJ, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides[J]. Science, 2010, 330(6001): 219-222.
doi: 10.1126/science.1192231 pmid: 20929773 |
[81] |
Bao W, Renganathan V. Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases[J]. FEBS Lett, 1992, 302(1): 77-80.
pmid: 1587358 |
[82] |
Chen C, Chen JY, Geng ZG, et al. Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum[J]. Biotechnol Biofuels, 2018, 11: 155.
doi: 10.1186/s13068-018-1156-2 pmid: 29991963 |
[83] | 夏东慧, 刘宁, 郭秀娜, 等. 嗜热毛壳菌多糖单加氧酶的氧化特性及协同作用[J]. 菌物学报, 2022, 41(7): 1068-1079. |
Xia DH, Liu N, Guo XN, et al. The oxidation properties and synergism of polysaccharide monooxygenase from Chaetomium thermophilum[J]. Mycosystema, 2022, 41(7): 1068-1079. | |
[84] |
Wilson DB. Three microbial strategies for plant cell wall degradation[J]. Ann N Y Acad Sci, 2008, 1125: 289-297.
doi: 10.1196/annals.1419.026 URL |
[85] |
Wu S, Wu S. Processivity and the mechanisms of processive endoglucanases[J]. Appl Biochem Biotechnol, 2020, 190(2): 448-463.
doi: 10.1007/s12010-019-03096-w pmid: 31378843 |
[86] |
Gomez del Pulgar EM, Saadeddin A. The cellulolytic system of Thermobifida fusca[J]. Crit Rev Microbiol, 2014, 40(3): 236-247.
doi: 10.3109/1040841X.2013.776512 pmid: 23537325 |
[87] |
Conway JM, Crosby JR, Hren AP, et al. Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic Caldicellulosiruptor species[J]. AIChE J, 2018, 64(12): 4218-4228.
doi: 10.1002/aic.v64.12 URL |
[88] | Bayer EA, Shoham Y, Lamed R. Lignocellulose-decomposing bacteria and their enzyme systems[M]// The Prokaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 215-266. |
[89] |
Li XQ, et al. Construction and characterization of bifunctional cellulases: Caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose[J]. Biochem Eng J, 2019, 151: 107363.
doi: 10.1016/j.bej.2019.107363 URL |
[90] |
Lee LL, Crosby JR, Rubinstein GM, et al. The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in ‘Caldi World’[J]. Extremophiles, 2020, 24(1): 1-15.
doi: 10.1007/s00792-019-01116-5 |
[91] |
Blumer-Schuette SE, Brown SD, Sander KB, et al. Thermophilic lignocellulose deconstruction[J]. FEMS Microbiol Rev, 2014, 38(3): 393-448.
doi: 10.1111/1574-6976.12044 pmid: 24118059 |
[92] | Conway JM, McKinley BS, Seals NL, et al. Functional analysis of the glucan degradation locus in Caldicellulosiruptor bescii reveals essential roles of component glycoside hydrolases in plant biomass deconstruction[J]. Appl Environ Microbiol, 2017, 83(24): e01828-e01817. |
[93] |
Young J, Chung D, Bomble YJ, et al. Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass[J]. Biotechnol Biofuels, 2014, 7(1): 142.
doi: 10.1186/s13068-014-0142-6 URL |
[94] |
Bayer EA, Lamed R, White BA, et al. From cellulosomes to cellulosomics[J]. Chem Rec, 2008, 8(6): 364-377.
doi: 10.1002/tcr.v8:6 URL |
[95] |
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides[J]. Nat Rev Microbiol, 2017, 15(2): 83-95.
doi: 10.1038/nrmicro.2016.164 pmid: 27941816 |
[96] |
Shoham Y, Lamed R, Bayer EA. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides[J]. Trends Microbiol, 1999, 7(7): 275-281.
doi: 10.1016/s0966-842x(99)01533-4 pmid: 10390637 |
[97] |
Hu BB, Zhu MJ. Reconstitution of cellulosome: research progress and its application in biorefinery[J]. Biotechnol Appl Biochem, 2019, 66(5): 720-730.
doi: 10.1002/bab.v66.5 URL |
[98] |
Raman B, Pan CL, Hurst GB, et al. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis[J]. PLoS One, 2009, 4(4): e5271.
doi: 10.1371/journal.pone.0005271 URL |
[99] |
Feinberg L, Foden J, Barrett T, et al. Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313[J]. J Bacteriol, 2011, 193(11): 2906-2907.
doi: 10.1128/JB.00322-11 URL |
[100] |
Fagan RP, Fairweather NF. Biogenesis and functions of bacterial S-layers[J]. Nat Rev Microbiol, 2014, 12(3): 211-222.
doi: 10.1038/nrmicro3213 pmid: 24509785 |
[101] |
Conway JM, Pierce WS, Le JH, et al. Multidomain, surface layer-associated glycoside hydrolases contribute to plant polysaccharide degradation by Caldicellulosiruptor species[J]. J Biol Chem, 2016, 291(13): 6732-6747.
doi: 10.1074/jbc.M115.707810 URL |
[102] |
Ozdemir I, Blumer-Schuette SE, Kelly RM. S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus[J]. Appl Environ Microbiol, 2012, 78(3): 768-777.
doi: 10.1128/AEM.07031-11 URL |
[103] |
Akram F, Haq IU, Imran W, et al. Insight perspectives of thermostable endoglucanases for bioethanol production: a review[J]. Renew Energy, 2018, 122: 225-238.
doi: 10.1016/j.renene.2018.01.095 URL |
[104] |
Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass—an overview[J]. Bioresour Technol, 2016, 199: 76-82.
doi: 10.1016/j.biortech.2015.08.030 URL |
[105] |
Peng XW, Qiao WB, Mi SF, et al. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment[J]. Biotechnol Biofuels, 2015, 8: 131.
doi: 10.1186/s13068-015-0313-0 URL |
[106] |
Alrumman SA. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid[J]. Braz J Microbiol, 2016, 47(1): 110-119.
doi: 10.1016/j.bjm.2015.11.015 pmid: 26887233 |
[107] |
Stevens JC, Shi J. Biocatalysis in ionic liquids for lignin valorization: opportunities and recent developments[J]. Biotechnol Adv, 2019, 37(8): 107418.
doi: 10.1016/j.biotechadv.2019.107418 URL |
[108] |
Cui L, Meddeb-Mouelhi F, Laframboise F, et al. Effect of commercial cellulases and refining on kraft pulp properties: correlations between treatment impacts and enzymatic activity components[J]. Carbohydr Polym, 2015, 115: 193-199.
doi: 10.1016/j.carbpol.2014.08.076 URL |
[109] |
Pèlach MA, Pastor FJ, Puig J, et al. Enzymic deinking of old newspapers with cellulase[J]. Process Biochem, 2003, 38(7): 1063-1067.
doi: 10.1016/S0032-9592(02)00237-6 URL |
[110] | Geng X, Li K, Kataeva IA, et al. Effects of two cellobiohydrolases, CbhA and CelK, from Clostridium thermocellum on deinking of recycled mixed office paper[J]. Progress in Paper Recycling, 2003, 12(3): 6-10. |
[111] | Spiridon I, Belgacem MN. Enzymatic deinking of laser-printed papers[J]. Progress in Paper Recycling, 2004, 13(4): 12-15. |
[112] |
Toushik SH, Lee KT, Lee JS, et al. Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries[J]. J Food Sci, 2017, 82(3): 585-593.
doi: 10.1111/1750-3841.13636 pmid: 28152204 |
[113] | 吴长青, 何国庆, 董爱茶. 纤维素酶的液态深层发酵研究进展[J]. 食品与发酵工业, 2001, 27(8): 60-64. |
Wu CQ, He GQ, Dong AC. Research progress of cellulase production by submerged culture method[J]. Food Ferment Ind, 2001, 27(8): 60-64. | |
[114] | 汪珈慧, 李燕, 姚紫涵, 等. 利用固定化纤维素酶酶解夏季绿茶工艺的研究[J]. 茶叶科学, 2012, 32(1): 37-43. |
Wang JH, Li Y, Yao ZH, et al. Study on the influence of immobilized cellulase on the summer tea extract[J]. J Tea Sci, 2012, 32(1): 37-43. | |
[115] |
Waters DM, Murray PG, Ryan LA, et al. Talaromyces emersonii thermostable enzyme systems and their applications in wheat baking systems[J]. J Agric Food Chem, 2010, 58(12): 7415-7422.
doi: 10.1021/jf100737v URL |
[116] |
Waters DM, Ryan LAM, Murray PG, et al. Characterisation of a Talaromyces emersonii thermostable enzyme cocktail with applications in wheat dough rheology[J]. Enzyme Microb Technol, 2011, 49(2): 229-236.
doi: 10.1016/j.enzmictec.2011.04.006 URL |
[117] |
Anish R, Rahman MS, Rao ML. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims[J]. Biotechnol Bioeng, 2007, 96(1): 48-56.
doi: 10.1002/(ISSN)1097-0290 URL |
[118] |
Verenich S, Arumugam K, Shim E, et al. Treatment of raw cotton fibers with cellulases for nonwoven fabrics[J]. Text Res J, 2008, 78(6): 540-548.
doi: 10.1177/0040517507083308 URL |
[119] |
Gomes I, Sarkar PK, Rahman SR, et al. Production of cellulase from Talaromyces emersonii and evaluation of its application in eco-friendly functional finishing of jute-based fabrics[J]. Bangla J Microbiol, 1970, 24(2): 109-114.
doi: 10.3329/bjm.v24i2.1253 URL |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[3] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[4] | 杨俊钊, 张新蕊, 孙清扬, 郑菲. Loop B3对GH7内切纤维素酶功能的影响机制[J]. 生物技术通报, 2023, 39(10): 281-291. |
[5] | 张开平, 刘燕丽, 涂绵亮, 李继伟, 吴文标. 烟曲霉A-16产纤维素酶工艺优化及酶学特性[J]. 生物技术通报, 2022, 38(9): 215-225. |
[6] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[7] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
[8] | 唐昊, 孙灿, 李沅秋, 罗朝兵. 纤维素降解菌Raoultella ornithinolytica LL1的筛选及基因组测序[J]. 生物技术通报, 2021, 37(6): 85-96. |
[9] | 胡芳, 董旭, 史长伟, 吴学栋. 超声波强化木质纤维素酶解的研究进展[J]. 生物技术通报, 2021, 37(10): 234-244. |
[10] | 刘登, 刘均洪. 嗜热性木质纤维素酶在纤维素乙醇生产中的研究进展[J]. 生物技术通报, 2020, 36(8): 185-193. |
[11] | 冯光志, 石慧, 刘博, 吴玉婷, 王月琳, 石玉. 小龙虾肠道产纤维素酶细菌的分离与鉴定[J]. 生物技术通报, 2020, 36(2): 65-70. |
[12] | 杨彬, 李小波, 周林, 区佩渝, 金小宝. 同步分泌高效纤维素酶和木聚糖酶菌株YB的鉴定及其酶学性质研究[J]. 生物技术通报, 2020, 36(2): 110-118. |
[13] | 张家顺, 高丽莉, 马江山, 刘高强. 表面活性剂对纤维素酶解的影响及机理[J]. 生物技术通报, 2019, 35(9): 11-20. |
[14] | 李林超, 张超, 董庆, 郭成, 周波, 高峥. 堆肥过程中纤维素降解菌的分离与鉴定[J]. 生物技术通报, 2019, 35(9): 165-171. |
[15] | 于慧娟, 郭夏丽. 秸秆降解菌的筛选及其纤维素降解性能的研究[J]. 生物技术通报, 2019, 35(2): 58-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||