生物技术通报 ›› 2020, Vol. 36 ›› Issue (9): 88-99.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1268
• 根际微生物专题(专题主编:张瑞福 研究员) • 上一篇 下一篇
李俊领, 马晓寒, 张豫丹, 贾玮, 许自成
收稿日期:
2019-12-26
出版日期:
2020-09-26
发布日期:
2020-09-30
作者简介:
李俊领,男,硕士研究生,研究方向:烟草品质生态;E-mail:lijulinghenau@qq.com
基金资助:
LI Jun-ling, MA Xiao-han, ZHANG Yu-dan, JIA Wei, XU Zi-cheng
Received:
2019-12-26
Published:
2020-09-26
Online:
2020-09-30
摘要: 烟草青枯病是由青枯雷尔氏菌(Ralstonia Solanacearum)引起的细菌性土传病害,严重危害我国烟草的生产。烟草青枯病的发生与土壤微生物的变化密切相关。从土壤理化性质、微生物群落结构、生态网络等方面系统地综述了烟草青枯病与土壤微生物间的关系,并进一步总结了目前生物防治烟草青枯病的相关机制,以期为推进烟草青枯病的生态防治提供参考。
李俊领, 马晓寒, 张豫丹, 贾玮, 许自成. 土壤微生物与烟草青枯病发生关系的研究进展[J]. 生物技术通报, 2020, 36(9): 88-99.
LI Jun-ling, MA Xiao-han, ZHANG Yu-dan, JIA Wei, XU Zi-cheng. Research Progress on the Relationship Between Soil Microorganism and Tobacco Bacterial Wilt[J]. Biotechnology Bulletin, 2020, 36(9): 88-99.
[1] Salanoubat M, Genin S, Artiguenave F, et al.Genome sequence of the plant pathogen Ralstonia solancearum[J]. Nature, 2002, 415(6871):497-502. [2] Genin S.Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum[J]. The New phytologist, 2010, 187(4):920-928. [3] Liu HL, Kang YW, Genin S, et al.Twitching motility of Ralstonia solanacearum requires a type IV pilus system[J]. Microbiology-Sgm, 2001, 147(12):3215-3229. [4] Tans-Kersten J, Huang H Y, Allen C.Ralstonia solanacearum needs motility for invasion virulence on tomato[J]. Journal of Bacteriology, 2001, 183(12):3597-3605. [5] Kao CC, Sequeira L.Extracellular polysaccharide is required for wild-type virulenceof Pseudomonas solanacearum[J]. Journal of bacteriology, 1992, 174(3):1068-1071. [6] Li SL, Xu C, Wang J, et al.Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum[J]. Plant Soil, 2016, 412(1-2):381-395. [7] 林海云, 车建美, 刘波, 等. 青枯雷尔氏菌致病机制及其相关基因的研究进展[J]. 福建农业学报, 2011, 26(5):899-906. Lin HY, Che JM, Liu B, et al.Pathogenic mechanism and related genes of Ralstonia solanacearum[J]. Fujian Agricultural Journal, 2011, 26(5):899-906. [8] 王姣. 草酸影响青枯雷尔氏菌与烟草互作的机制研究[D]. 重庆:西南大学, 2019. Wang J.Mechanism of oxalic acid on the interaction between Ralstonia solanacearum and tobacco[D]. Chongqing:Southwest University, 2019. [9] 周星洋. 外源诱导不同抗青枯病水平烟草生理生化反应的差异分析[D]. 广州:华南农业大学, 2016. Zhou XY.Differential analysis of physiological and biochemical responses of tobacco with different levels of resistance to bacterial wilt induced by exogenous sources[D]. Guangzhou:South China Agricultural University, 2016. [10] Liu Y, Wu DS, Liu QP, et al.The sequevardistribution of Ralstonia solanacearum in tobacco growing zones of China is structured byelevation[J]. European Journal of Plant Pathology, 2016, 147(3):541-551. [11] Niu J.Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate[J]. Journal of Basic Microbiology, 2017, 57(1):3-11. [12] King SR, Davis AR, Liu W, et al.Grafting for disease resistance[J]. Journal of the American Society for Horticultural Science, 2008, 43(6):1673-1676. [13] Yi Y, Liu R, Yin H, et al.Isolation, identifi-cation and field control efficacy of endophytic strain against tobacco bacterial wilt[J]. Journal of Applied Ecology, 2007, 18(3):554-558. [14] Liu Y, Shi J, Feng Y, et al.Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer[J]. Biology and Fertility of Soils, 2013, 49(4):447-464. [15] Yan XL, Xiang L, Yi C, et al.Field control efficiency of tobacco specific bio-organic fertilizer on tobacco bacterial wilt[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5):1203-1211. [16] Paul JH, Geoff MP, Leo A, et al.Differences in microbial activity and microbial populations of peat associated with suppression of damping-off disease caused by Pythium sylvaticum. Applied and Environmental Microbiology, 2006, 72(10):6452. [17] Cha JY, Han S, Hong HJ, et al.Microbial and biochemical basis of a Fusarium wilt suppressive soil[J]. Multidisciplinary Journal of Microbial Ecology, 2015, 10(1):119-129. [18] 邹汉玄, 杨先跃, 曹斌, 等. 土壤微生物对柑桔生长及产量的影响[J]. 果树科学, 1994, (1):19-22. Zou HX, Yang XY, Cao B, et al.Effects of soil microorganisms on the growth and yield of Citrus[J]. Fruit tree science, 1994,(1):19-22. [19] 毛宁, 贾海燕, 杨建霞, 等. 不同生态类型土壤养分与微生物数量相关关系研究[J]. 陇东学院学报, 2019, 30(5):72-76. Mao N, Jia HY, Yang JX, et al.Study on the correlation between soil nutrients and microbial population in different ecological types[J]. Journal of Longdong University, 2019, 30(5):72-76. [20] 张淑婷. 铝离子影响烟草青枯病发生的机制研究[D]. 重庆:西南大学, 2018. Zhang ST.Mechanism of aluminum ion affecting tobacco bacterial wilt[D]. Chongqing:Southwest University, 2018. [21] 王茂胜, 姜超英, 潘文杰, 等. 不同连作年限的植烟土壤理化性质与微生物群落动态研究[J]. 安徽农业科学, 2008(12):5033-5034. Wang MS, Jiang CY, Pan WJ, et al.Physicochemical properties and microbial community dynamics of tobacco planting soil with different continuous cropping years[J]. Anhui Agricultural Science, 2008(12):5033-5034. [22] 陈娜. 钾肥对烟草青枯病的防控效果及其根际微生物群落的影响[J]. 安徽农业科学, 2018, 46(22):125-127. Chen N.Control effect of Potassium Fertilizer on tobacco bacterial wilt and its effect on rhizosphere microbial community[J]. Anhui Agricultural Science, 2018, 46(22):125-127. [23] 李小龙, 李红丽, 曾强, 等. 钙镁磷肥对青枯病发病烟株根际土壤微生物区系的影响[J]. 中国烟草学报, 2016, 22(1):75-79. Li XL, Li HL, Zeng Q, et al.Effect of calcium magnesium phosphate on rhizosphere soil microflora of tobacco plants with bacterial wilt[J]. Chinese Journal of Tobacco, 2016, 22(1):75-79. [24] Yin DH, Wang N, Xia F, et al.Impact of biocontrol agents Pseudomonas fluorescens 2P24 and CPF10 on the bacterial community in the cucumber rhizosphere[J]. Europ J Soil Biol, 2013, 59:36-42. [25] Ji GH, Wei LF, He YQ, et al.Biological control of rice bacterial blight by Lysobacter antibioticus strain[J]. Biological Control, 2008, 45(3):288-296. [26] Shekhawat GS, Perombelon MC.Factors affecting survival in soil and virulence of Pseudomonas solanacearum[J]. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz. 1991, 98(3):258-267. [27] 喻延. 土壤pH值及不同调控措施对烟草青枯病发生情况的影响[D]. 重庆:西南大学, 2016. Yu Y.Effects of soil pH and different control measures on tobacco bacterial wilt[D]. Chongqing:Southwest University, 2016. [28] 廖咏梅, 张桂英, 罗家立, 等. 土壤条件与番茄青枯病发生的关系探讨[J]. 广西植保, 1997, (3):13-16. Liao YM, Zhang GY, Luo JL, et al.Relationship between soil conditions and tomato bacterial wilt[J]. Guangxi plant protection, 1997,(3):13-16. [29] 李集勤, 陈俊标, 袁清华, 等. 客土改良对植烟土壤营养及烟草青枯病的影响[J]. 中国烟草科学, 2017, 38(1):48-52. Li JQ, Chen JB, Yuan QH, et al.Effects of foreign soil improvement on soil nutrition and bacterial wilt of tobacco[J]. China Tobacco Science, 2017, 38(1):48-52. [30] 何凯. 生物有机肥和石灰石对青枯病防治及烟叶品质的影响[D]. 重庆:西南大学, 2015. He K.Effects of bio organic fertilizer and limestone on bacterial wilt control and tobacco quality[D]. Chongqing:Southwest University, 2015. [31] 杨红武. 不同耕作制土壤和叶面微生物群落与三种烟草病害的关系[D]. 长沙:湖南农业大学, 2018. Yang HW.Relationship between soil and leaf microbial communities under different tillage systems and three tobacco diseases[D]. Changsha:Hunan Agricultural University, 2018. [32] 陈乾锦, 林书震, 李红丽, 等. 邵武烟田土壤微生物群落结构变化与烟草青枯病发生关系初报[J]. 中国烟草学报, 2019, 25(4):4-10. Chen QJ, Lin SZ, Li HL, et al.A preliminary report on the relationship between the changes of soil microbial community structure and the occurrence of tobacco bacterial wilt in Shaowu tobacco field[J]. Chinese Journal of Tobacco, 2019, 25(4):4-10. [33] 林书震. 烟田土壤微生物特征及与青枯病发生关系研究[D]. 郑州:郑州大学, 2019. Lin SZ.Study on the relationship between soil microbial characteristics and bacterial wilt in tobacco field[D]. Zhengzhou:Zhengzhou University, 2019. [34] Wang R, Zhang H, Sun L, et al.Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 2017, 7(1):343-345. [35] She S, Niu J, Zhang C, et al.Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system[J]. Archives of Microbiology, 2017, 199(2):267-275. [36] 刘开朗, 王加启, 卜登攀, 等. 环境微生物群落结构与功能多样性研究方法[J]. 生态学报, 2010, 30(4):1074-1080. Liu KL, Wang JQ, Bu DP, et al.Research methods of community structure and functional diversity of environmental microorganism[J]. J Ecol, 2010, 30(4):1074-1080. [37] 匡传富, 何志明, 汤若云, 等. 烟草青枯病土壤微生物数量及生理群的测定[J]. 中国烟草科学, 2003, 5(1):43-45. Kuang CF, He ZM, Tang RY, et al.Determination of soil microbial quantity and physiological group of tobacco bacterial wilt[J]. China Tobacco Science, 2003, 5(1):43-45. [38] 李黎绅, 李淑玲, 袁清华. 紫色土壤微生物种群和数量与烟草青枯病发生的关系研究[J]. 广州农业科学, 2013, 2(7):80-85. Li LS, Li SL, Yuan QH.Study on the relationship between the microbial population and quantity of purple soil and the occurrence of tobacco bacterial wilt[J]. Guangzhou Agricultural Science, 2013, 2(7):80-85. [39] 韩雪, 吴凤芝, 潘凯, 等. 根系分泌物与土传病害关系之研究综述[J]. 中国农学通报, 2006, 2(22):316-318. Han X, Wu FZ, Pan K, et al.Review on the relationship between root exudates and soil borne diseases[J]. China Agronomy Bulletin, 2006, 2(22):316-318. [40] 常安然, 李佳, 张耸, 等. 基于宏基因组学16S rDNA测序对烟草根际土壤细菌群落组成分析[J]. 中国农业科技导报, 2017, 19(2):43-50. Chang AR, Li J, Zhang S, et al.Analysis of bacterial community composition in tobacco rhizosphere soil based on 16S rDNA sequencing of macrogenomics[J]. China Agricultural Science and Technology Herald, 2017, 19(2):43-50. [41] Liu XJ, Zhang ST, Jiang QP, et al.Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt[J]. Scientific Reports, 2016, 6:36773. [42] 施河丽, 向必坤, 谭军, 等. 烟草青枯病发病烟株根际土壤细菌群落分析[J]. 中国烟草学报, 2018, 24(5):61-69. Shi HL, Xiang BK, Tan J, et al.Analysis of bacterial community in rhizosphere soil of tobacco plant with bacterial wilt[J]. Chinese Journal of Tobacco, 2018, 24(5):61-69. [43] Berendsen RL, Corné MJP, Bakker PAHM.The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8):4-8. [44] 向立刚, 周浩, 汪汉成, 等. 健康与感染青枯病烟株不同部位细菌群落结构与多样性[J]. 微生物学报, 2018, 5(24):3-5. Xiang LG, Zhou H, Wang HC, et al.Bacterial community structure and diversity in different parts of healthy and infected tobacco[J]. Journal of Microbiology, 2018, 5(24):3-5. [45] 刘晓姣. 烟草根际抑病土壤有益微生物的组学特征及对青枯病的拮抗作用研究[D]. 重庆:西南大学, 2018. Liu XJ.Study on the histochemical characteristics of beneficial microorganisms and their antagonistic effect on bacterial wilt in tobacco rhizosphere disease resistant soil[D]. Chongqing:Southwest University, 2018:107-109. [46] Wu K, Yuan S, Wang L, et al.Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities[J]. Biology and Fertility of Soils, 2014, 50(6):961-971. [47] Wei Z, Yang T, Friman VP, et al.Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communication, 2015, 6:8413. [48] 韦中. 生物有机肥防控土传番茄青枯病的效果及其机制研究[D]. 南京:南京农业大学, 2012. Wei Z.Effect and mechanism of bio organic fertilizer on controlling soil borne tomato bacterial wilt[D]. Nanjing:Nanjing Agricultural University, 2012:51-53. [49] Dipak SP, Daniel S, Chun TY, et al.Long-term no-till:a major driver of fungal communities in dryland wheat cropping systems[J]. Public Library of Science, 2017, 12(9):e0184611. [50] 林书震, 李小龙, 李红丽, 等. 烟株生长过程中土壤微生物的变化特征[J]. 中国土壤与肥料, 2019(5):14-24. Lin SZ, Li XL, Li HL, et al.Characteristics of soil microbial changes during tobacco growth[J]. Chinese Journal of soil and fertilizer, 2019(5):14-24. [51] 蔡秋华, 赵正雄, 左进香, 等. 有机肥配施减量化肥对烤烟青枯病及其根际微生物的影响[J]. 烟草科技, 2018, 51(11):20-27. Cai QH, Zhao ZX, Zuo JX, et al.Effects of organic fertilizer combined with reduced chemical fertilizer on tobacco bacterial wilt and rhizosphere microorganisms[J]. Tobacco science and technology, 2018, 51(11):20-27. [52] 吴晓宗, 王岩. 生物有机肥防治烟草青枯病及对土壤微生物多样性的影响[J]. 中国土壤与肥料, 2019(4):193-199. Wu XZ, Wang Y.Effect of bio organic fertilizer on tobacco bacterial wilt and soil microbial diversity[J]. Chinese Journal of soil and fertilizer, 2019(4):193-199. [53] 沈桂花. 生物熏蒸对烟草连作土壤微生物群落的影响及对青枯病的控制作用研究[D]. 重庆:西南大学, 2019. Shen GH.Effect of biological fumigation on soil microbial community and control of bacterial wilt in tobacco continuous cropping system[D]. Chongqing:Southwest University, 2019. [54] 赵文宗. 嫁接番茄抗青枯病特性及根系分泌物化感作用的研究[D]. 广西:广西大学, 2019. Zhao WZ.Study on the resistance of grafted tomato to bacterial wilt and Allelopathy of root exudates[D]. Guangxi:Guangxi University, 2019. [55] 张卫娜, 贾谏, 陆晓宇, 等. 镰刀菌属真菌毒素的研究进展[J]. 广东农业科学, 2013, 40(15):130-133. Zhang WN, Jia J, Lu XY, et al.Research progress of Fusarium mycotoxins[J]. Guangdong Agricultural Sciences, 2013, 40(15):130-133. [56] 王婷婷. 生防丛枝菌根真菌的发掘及在烟草上的应用研究初探[D]. 南京:南京农业大学, 2013. Wang TT.Exploration of biocontrol arbuscular mycorrhizal fungi and their application in tobacco[D]. Nanjing:Nanjing Agricultural University, 2013. [57] 李海燕, 刘润进, 束怀瑞. 丛枝菌根真菌提高植物抗病性的作用机制[J]. 菌物系统, 2001(1):435-439. Li HY, Liu RJ, Shu HR.The mechanism of arbuscular mycorrhizal fungi in improving plant disease resistance[J]. Mycological system, 2001(1):435-439. [58] 胡正嘉, 王平. VA菌根真菌对棉花枯萎病的影响[J]. 土壤学报, 1994, 31(增刊):212-217. Hu ZJ, Wang P.Effects of VA mycorrhizal fungi on Fusarium Wilt of cotton[J]. Acta Sinica Sinica, 1994, 31(Supplement):212-217. [59] Hooker JE, Jaizme-Vega M, Atkinson D.Biocontrol of plant pathogens using arbuscular mycorrhzial fungi[M]. Impact of Arbuscular Mycorhizas on Sustainable Agriculture and Natural ecosystems. Verlag, Basel, Switzerland, 1994:191-200. [60] 朱红惠, 龙良坤, 羊宋贞, 等. AM真菌对青枯菌和根际细菌群落结构的影响[J]. 菌物学报, 2005(1):137-142. Zhu HH, Long K, Yang SZ, et al.Effects of AM fungi on bacterial community structure of Ralstonia solanacearum and rhizosphere bacteria[J]. Acta mycologica Sinica, 2005(1):137-142. [61] 赵子豪, 雷愉, 龙雯素, 等. 银杏内生真菌及其在姜青枯病防治方面的研究进展[J]. 湖南科技学院学报, 2019, 40(5):31-35. Zhao ZH, Lei Y, Long WS, et al.Endophytic fungi of Ginkgo biloba and its application in the control of Ginger Bacterial Wilt[J]. Journal of Hunan University of science and technology, 2019, 40(5):31-35. [62] 周松林, 陈双林, 谭光宏, 等. 一株银杏内生真菌菌株的抑菌活性成分研究[J]. 天然产物研究与开发, 2010, 22(2):193-196. Zhou SL, Chen SL, Tan GH, et al.Study on the antibacterial activity of an endophytic fungus strain from Ginkgo biloba[J]. Natural Product Research and Development, 2010, 22(2):193-196. [63] 朱红惠, 姚青, 李浩华, 等. AM真菌对青枯菌的抑制和对酚类物质的影响[J]. 微生物学通报, 2004(1):1-5. Zhu HH, Yao Q, Li HH, et al.Inhibition of AM fungi on Ralstonia solanacearum and its effect on phenolic compounds[J]. Bulletin of Microbiology, 2004(1):1-5. [64] 谭树朋, 孙文献, 刘润进. 球囊霉属真菌与芽孢杆菌M3-4协同作用降低马铃薯青枯病的发生及其机制初探[J]. 植物病理学报, 2015, 45(6):661-669. Tan SP, Sun WW, Liu RJ.Synergistic effect of ascomycete and Bacillus M3-4 on reducing potato bacterial wilt and its mechanism[J]. Acta Phytopathology, 2015, 45(6):661-669. [65] 顾静馨. 土壤微生物生态网络的构建方法及其比较[D]. 扬州:扬州大学, 2015. Gu JX.Construction methods and comparison of soil microbial ecological networks[D]. Yangzhou:Yangzhou University, 2015. [66] Yeung MKS, Tegnér J, Collins JJ.Reverse engineering gene networks using singular value decomposition and robust regression[J]. Proc Natl Acad Sci, 2002, 99(9):6163-6168. [67] Gerstung M, Baudis M, Moch H, et al.Quantifying cancer progression with conjunctive Bayesian networks[J]. Bioinformatics, 2009, 25(21):2809-2815. [68] Horvath S, Dong J, Miyano S.Geometric interpretation of gene Coexpression network analysis[J]. Public Library of Science Computational Biology, 2008, 4(8):e1000117. [69] Detti A.Conet:a content centric inter-networking architecture[J]. Association for Computing Machinery Conference on Information Centric Networking, 2011, 11(8):2-6. [70] Soffer, Nitzan, Zaneveld, et al. Phage-bacteria network analysis and its implication for the understanding of coral disease[J]. Environmental Microbiology, 17(4):1203-1218. [71] Ji Z, Deng Y, Luo F, et al.Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. Microbiology, 2011, 2(4):e00122-11. [72] Case TJ.Invasion resistance arises in strongly interacting species-rich model competition communities[J]. Proc Natl Acad Sci, 1990, 87(24):9610-9614. [73] Yang HW, Li J, Xiao Y, et al.An integrated Insight into the relationship between soil microbial community and tobacco bacterial wilt disease[J]. Front Microbiol, 2017, 8(9):2179. [74] Newman MEJ.Modularity and community structure in networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23):8577-8582. [75] Wei Z, Gu Y, Friman VP, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9):eaaw0759. [76] Wei Z, Yang X, Yin S, et al.Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field[J]. Applied Soil Ecology, 2011, 48(2):152-159. [77] Olesen JM, Bascompte J, Dupont YL, et al.The modularity of pollination networks[J]. Proc Natl Acad Sci, 2007, 104(50):19891-19896. [78] Lu L, Yin S, Liu X, et al.Fungal networks in yield-invigorating and debilitating soils induced by prolonged potato monoculture[J]. Soil Biology and Biochemistry, 2013, 65:186-194. [79] Chaffron S, Rehrauer H, Pernthaler J, et al.A global network of coexisting microbes from environmental and whole-genome sequence data[J]. Genome Research, 2010, 20(7):947-959. [80] Guimerà, Roger, Sales-Pardo M, et al. Classes of complex networks defined by role-to-role connectivity profiles[J]. Nature Physics, 2006, 3(1):63-69. [81] Bonacich P.Power and centrality:A family of measures[J]. American Journal of Sociology, 1987, 92(5):1170-1182. [82] Li S, Xu C, Wang J, et al.Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum[J]. Plant Soil, 2017, 412(1):381-395. [83] Li M, Wang J, Jousset A, et al.Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters, 2019, 22(1):149-158. [84] Bais HP, Vivanco FJM.Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1):307-319. [85] Rangaswamy V, Jiralerspong S, Parry R, et al.Biosynthesis of the Pseudomonas polyketide coronafacic acid requires monofunctional and multifunctional polyketide synthase proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26):15469-15474. [86] Chater KF, Biró S, Lee KJ, et al.The complex extracellular biology of Streptomyces[J]. Federation of European Microbiological Societies Microbiology Reviews, 2010, 34(2):171-198. [87] Cao Y, Zhang Z, Ling N, et al.Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils, 2011, 47(5):495-506. [88] Li M, Wei Z, Wang J, et al.Facilitation promotes invasion in plant-associated microbial communities[J]. Ecology Letters, 2018, 22(1):149-158. [89] Jousset A, Bienhold C, Chatzinotas A, et al.Where less may be more:how the rare biosphere pulls ecosystems strings[J]. Multidisciplinary Journal of Microbial Ecology, 2017, 11(4):853-862. [90] Santhanam R, Luu VT, Weinhold A, et al.Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping[J]. Proc Natl Acad Sci, 2015, 112(5):e5013-e5020. [91] 郑继法, 丁爱云, 张建华, 等. 山东省烟草青枯病的发生和病原菌鉴定研究[J]. 山东农业大学学报, 1996, (1):17-22. Zheng JF, Ding AY, Zhang JH, et al.Study on the occurrence and pathogen identification of tobacco bacterial wilt in Shandong Province[J]. Journal of Shandong Agricultural University, 1996, (1):17-22. [92] 易有金, 尹华群, 罗宽, 等. 烟草内生短短芽孢杆菌的分离鉴定及对烟草青枯病的防效[J]. 植物病理学报, 2007, (3):301-306. Yi YJ, Yin HQ, Luo K, et al.Isolation and identification of endophytic Brevibacillus brevis and its control effect on tobacco bacterial wilt[J]. Journal of plant pathology, 2007, (3):301-306. [93] Yuan S, Wang L, Wu K, et al.Evaluation of Bacillus fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments[J]. Applied Soil Ecology, 2014, 75:86-94. [94] 刘雅婷. 烟草青枯病的研究进展[J]. 云南农业大学学报, 2001, 16(1):72-76. Liu YT.Research progress of tobacco bacterial wilt[J]. Journal of Yunnan Agricultural University, 2001, 16(1):72-76. [95] Trigalet A.Use of Airulent mutants of Pseudomonas for the biological control of bacterial wilt of tomato plants[J]. Physiological and Molecular Plant Pathology, l990, 36:27-38. [96] 陈亮, 周晓见, 董昆明, 等. 1株烟草青枯病生防细菌的分离与鉴定[J]. 江苏农业科学, 2012, 40(1):104-107. Chen L, Zhou XJ, Dong KM, et al.Isolation and identification of a biocontrol bacterium against tobacco bacterial wilt[J]. Jiangsu agricultural science, 2012, 40(1):104-107. [97] 程小龙. 外源水杨酸诱导烟草抗青枯病的作用及机理研究[D]. 重庆:西南大学, 2014. Cheng XL.Study on the effect and mechanism of exogenous Salicylic acid induced tobacco resistance to bacterial wilt[D]. Chongqing:Southwest University, 2014. [98] 陈达. 拮抗菌和青枯菌无致病力突变株防控茄科作物青枯病的效应和机理研究[D]. 南京:南京农业大学, 2014. Chen D.Study on the effect and mechanism of antagonistic bacteria and bacterial wilt resistant mutants on the control of Solanaceae bacterial wilt[D]. Nanjing:Nanjing Agricultural University, 2014. [99] 董春, 曾宪铭, 刘琼光. 利用无致病力青枯菌株防治番茄青枯病的研究[J]. 华南农业大学学报, 1999, (4):1-4. Dong C, Zeng XM, Liu QG.Study on the control of tomato bacterial wilt by non- pathogenic bacterial strains[J]. Journal of South China Agricultural University, 1999, (4):1-4. [100] 陈巧玲, 胡江, 汪汉成, 等. 生物有机肥对盆栽烟草根际青枯病原菌和短芽孢杆菌数量的影响[J]. 南京农业大学学报, 2012, 35(1):75-79. Chen QL, Hu J, Wang HC, et al.The effect of bio-organic fertilizer on the quantity of original bacteria and Bacillus brevis of rhizosphere bacterial wilt of potted tobacco[J]. Journal of Nanjing Agricultural University, 2012, 35(1):75-79. [101] 肖相政, 刘可星, 廖宗文, 等. 枯草芽孢杆菌X-4对土壤青枯菌消长变化及防病效果的影响[J]. 湖北农业科学, 2011, 50(12):2425-2429. Xiao XZ, Liu KX, Liao ZW, et al.The effect of Bacillus subtilis x-4 on the growth and development of soil bacterial wilt and its disease control effect[J]. Hubei agricultural science, 2011, 50(12):2425-2429. |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[3] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[4] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[5] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[6] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[7] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[8] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[9] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[10] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[11] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[12] | 刘广超, 叶青, 车永梅, 李雅华, 安东, 刘新. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187. |
[13] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[14] | 祝静, 于存. 长枝木霉菌肥对玉米生长、土壤肥力和根际微生物的影响[J]. 生物技术通报, 2022, 38(4): 230-241. |
[15] | 付偲僮, 司未佳, 刘颖, 程堂仁, 王佳, 张启翔, 潘会堂. TRV介导的小报春基因沉默技术体系的建立[J]. 生物技术通报, 2022, 38(4): 295-302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||