生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 9-16.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0192
李俊林1,2(), 张焕朝2, 聂文婧1, 张海洋1, 王向誉1, 郭洪恩1(), 韩蕾3()
收稿日期:
2021-02-18
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
李俊林,男,博士,助理研究员,研究方向:植物养分高效利用及植物耐逆机理;E-mail: 基金资助:
LI Jun-lin1,2(), ZHANG Huan-chao2, NIE Wen-jing1, ZHANG Hai-yang1, WANG Xiang-yu1, GUO Hong-en1(), HAN Lei3()
Received:
2021-02-18
Published:
2021-10-26
Online:
2021-11-12
摘要:
克隆蒙古沙冬青钾离子通道AmGORK的启动子区域,探明在干旱胁迫下它对保卫细胞运动的调控机制,为深入研究该基因在水分及养分利用、光合作用、抗旱等过程的功能奠定基础。以蒙古沙冬青保卫细胞外向钾离子通道基因AmGORK编码序列为基础,通过染色体步移技术克隆该基因的启动子序列,并对其进行生物信息学分析,构建pCambia1301-AmGORK∷GUS双元载体转化野生型拟南芥,对T3转基因拟南芥各组织进行GUS活性染色,转基因植株经PEG或ABA处理后,分析AmGORK启动子的表达情况。结果表明,获得AmGORK上游1 723 bp序列,该区域含有多个响应干旱、ABA、光照等的顺式调控元件,说明AmGORK可能参与干旱响应过程。经GUS活性染色,发现AmGORK在根中柱、叶柄、叶脉、叶片保卫细胞、花萼均有表达,表明AmGORK的表达具有组织特异性。定量分析发现PEG或ABA处理后的转基因植株中GUS分别上调3.2倍和4.1倍。AmGORK表达可能受干旱诱导。
李俊林, 张焕朝, 聂文婧, 张海洋, 王向誉, 郭洪恩, 韩蕾. 蒙古沙冬青外向钾离子通道AmGORK启动子克隆及表达分析[J]. 生物技术通报, 2021, 37(10): 9-16.
LI Jun-lin, ZHANG Huan-chao, NIE Wen-jing, ZHANG Hai-yang, WANG Xiang-yu, GUO Hong-en, HAN Lei. Cloning and Expression Analysis of Outward Potassium Ion Channel Gene AmGORK Promoter from Ammopiptanthus mongolicus[J]. Biotechnology Bulletin, 2021, 37(10): 9-16.
序号Sequence No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|---|
1 | GP1-1 | GCCGAATTCCATTGGGGTGAAG |
2 | GP1-2 | ACGATGGACTCCAGTCCGGCCGTGGTGGATCCTCCAATCCAAC |
3 | GP1-3 | CTTCCTCCTCCGAATCATCGCT |
4 | GP2-1 | CTGGAGTCCATCGTAATCGTCGA |
5 | GP2-2 | ACGATGGACTCCAGTCCGGCCCAACTCCAGCTTGACTCAAGCAAC |
6 | GPP2-3 | CAACTTGAACAGGAGCTTGCTCG |
7 | LAD1-1 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)N(G/C/A)NNNGGAA |
8 | LAD1-2 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)N(G/C/T)NNNGGTT |
9 | LAD1-3 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)(G/C/A)N(G/C/A)NNNCCAA |
10 | LAD1-4 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)(G/A/T)N(G/C/T)NNNCGGT |
11 | AC1 | ACGATGGACTCCAGAG |
12 | AmGORK-pro-F | GGTACCGGCACTTTTTTTAACAAGGTGAATCAATG |
13 | AmGORK-pro-R | CCATGGGGCGATGCTCTTTGCCATTCTC |
14 | AmGORK-pro-F-375 | GGTACCCTCCGATCCTATTTTGGTATATCA |
15 | AmGORK-pro-F-856 | GGTACCCTGGGTTGCAGTCAGGATAATAC |
16 | AmGORK-pro-F-1245 | GGTACCGCTGATTCTTGAAGAATGGAG |
表1 试验所用引物序列
Table 1 Primer sequences used in the experiment
序号Sequence No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|---|
1 | GP1-1 | GCCGAATTCCATTGGGGTGAAG |
2 | GP1-2 | ACGATGGACTCCAGTCCGGCCGTGGTGGATCCTCCAATCCAAC |
3 | GP1-3 | CTTCCTCCTCCGAATCATCGCT |
4 | GP2-1 | CTGGAGTCCATCGTAATCGTCGA |
5 | GP2-2 | ACGATGGACTCCAGTCCGGCCCAACTCCAGCTTGACTCAAGCAAC |
6 | GPP2-3 | CAACTTGAACAGGAGCTTGCTCG |
7 | LAD1-1 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)N(G/C/A)NNNGGAA |
8 | LAD1-2 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)N(G/C/T)NNNGGTT |
9 | LAD1-3 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)(G/C/A)N(G/C/A)NNNCCAA |
10 | LAD1-4 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)(G/A/T)N(G/C/T)NNNCGGT |
11 | AC1 | ACGATGGACTCCAGAG |
12 | AmGORK-pro-F | GGTACCGGCACTTTTTTTAACAAGGTGAATCAATG |
13 | AmGORK-pro-R | CCATGGGGCGATGCTCTTTGCCATTCTC |
14 | AmGORK-pro-F-375 | GGTACCCTCCGATCCTATTTTGGTATATCA |
15 | AmGORK-pro-F-856 | GGTACCCTGGGTTGCAGTCAGGATAATAC |
16 | AmGORK-pro-F-1245 | GGTACCGCTGATTCTTGAAGAATGGAG |
图2 AmGORK启动子序列的扩增 A:TAIL-PCR扩增AmGORK启动子序列第一轮扩增产物(1:250 bp marker;2-5:4条随机引物扩增片段);B:TAIL-PCR扩增AmGORK基启动子序列第二轮扩增产物(1:DL2000 marker;2-5:4条随机引物扩增片段);C:启动子全长序列的扩增(1:DL2000 marker;2、3:AmGORK启动子片段)
Fig. 2 Amplification of AmGORK promoter sequence A:The first round amplified products while TAIL-PCR amplified AmGORK promoter sequence(1:250 bp marker. 2-5:Fragments amplified by four random primers). B:The second round products while TAIL-PCR amplified AmGORK promoter sequence(1:DL2000 marker. 2-5:Fragments amplified by four random primers). C:Amplification of full length AmGORK promoter sequence(1:DL2000 marker. 2 and 3:Promoter fragment of AmGORK)
基序名称Site name | 物种Species | 序列Sequence | 功能Function |
---|---|---|---|
AAAC-motif | 菠菜 Spinacia oleracea | CAATCAAAACCT | 光响应元件 Light-responsive element |
AACA-motif | 水稻 Oryza sativa | TAACAAACTCCA | 胚乳特异性表达 Involved in endosperm-specific expression |
ABRE | 拟南芥 A. thaliana | TACGTG | ABA响应顺式作用元件cis-acting element involved in the abscisic acid responses |
CAAT-box | 拟南芥 A. thaliana | GGCAAT | 启动子和增强子区域共有顺式作用元件Common cis-acting element in promoter and enhancer regions |
G-box | 金鱼草 Antirrhinum majus | CACGTA | 光反应中的顺式调节元件cis-acting regulatory element involved in light responses |
GAG-motif | 大麦 Hordeum vulgare | GGAGATG | 光响应元件的一部分 Part of a light-responsive element |
GARE-motif | 甘蓝 Brassica oleracea | AAACAGA | 赤霉素响应元件 Gibberellin-responsive element |
GCN4 | 水稻 O. sativa | TGAGTCA | 胚乳表达顺式调控元件 cis-regulatory element involved in endosperm expression |
HSE | 甘蓝 B. oleracea | AAAAAATTTC | 热响应顺式作用元件 cis-acting element involved in heat stress responses |
I-box | 豌豆 Pisum sativum | ATGATATGA | 光响应元件的一部分 Part of a light-responsive element |
LAMP-element | 菠菜 S. oleracea | CCTTATCCA | 光响应元件的一部分 Part of a light-responsive element |
LTR | 大麦 H. vulgare | CCGAAA | 低温响应顺式作用元件 cis-acting element involved in low-temperature responses |
MBS | 拟南芥 A. thaliana | TAACTG | 干旱诱导MYB结合位点 MYB binding site involved in drought-inducibility |
MRE | 荷兰芹 Petroselinum crispum | AACCTAA | MYB结合位点参与光响应 MYB binding site involved in light responses |
O2-site | 玉米 Zea mays | GATGACATGG | 玉米蛋白代谢调控顺式作用元件 cis-acting regulatory element involved in zein metabolism regulation |
Skn-1 motif | 水稻 Oryza sativa | GTCAT | 胚乳表达必需的顺式作用元件 cis-acting regulatory element required for endosperm expression |
Sp1 | 玉米 Zea mays | CC(G/A)CCC | 光响应元件 Light-responsive element |
TATA-box | 拟南芥 A. thaliana | TATA | 在转录开始前30 bp核心启动子元件 Core promoter element around -30 bp of transcription start |
TC-rich repeats | 烟草 Nicotiana tabacum | ATTTTCTCCA | 防御及胁迫响应顺式作用元件 cis-acting element involved in defense and stress responses |
TCT-motif | 拟南芥 A.s thaliana | TCTTAC | 光响应元件的一部分 Part of a light-responsive element |
circadian | 番茄 Lycopersicon esculentum | CAANNNNATC | 昼夜节律控制顺式作用元件 cis-acting regulatory element involved in circadian control |
rbcS-CMA7a | 膨胀浮萍 Lemna gibba | GTCGATAAGG | 光响应元件的一部分 Part of a light-responsive element |
表2 AmGORK启动子序列预测分析
Table 2 Prediction analysis of AmGORK promoter sequence
基序名称Site name | 物种Species | 序列Sequence | 功能Function |
---|---|---|---|
AAAC-motif | 菠菜 Spinacia oleracea | CAATCAAAACCT | 光响应元件 Light-responsive element |
AACA-motif | 水稻 Oryza sativa | TAACAAACTCCA | 胚乳特异性表达 Involved in endosperm-specific expression |
ABRE | 拟南芥 A. thaliana | TACGTG | ABA响应顺式作用元件cis-acting element involved in the abscisic acid responses |
CAAT-box | 拟南芥 A. thaliana | GGCAAT | 启动子和增强子区域共有顺式作用元件Common cis-acting element in promoter and enhancer regions |
G-box | 金鱼草 Antirrhinum majus | CACGTA | 光反应中的顺式调节元件cis-acting regulatory element involved in light responses |
GAG-motif | 大麦 Hordeum vulgare | GGAGATG | 光响应元件的一部分 Part of a light-responsive element |
GARE-motif | 甘蓝 Brassica oleracea | AAACAGA | 赤霉素响应元件 Gibberellin-responsive element |
GCN4 | 水稻 O. sativa | TGAGTCA | 胚乳表达顺式调控元件 cis-regulatory element involved in endosperm expression |
HSE | 甘蓝 B. oleracea | AAAAAATTTC | 热响应顺式作用元件 cis-acting element involved in heat stress responses |
I-box | 豌豆 Pisum sativum | ATGATATGA | 光响应元件的一部分 Part of a light-responsive element |
LAMP-element | 菠菜 S. oleracea | CCTTATCCA | 光响应元件的一部分 Part of a light-responsive element |
LTR | 大麦 H. vulgare | CCGAAA | 低温响应顺式作用元件 cis-acting element involved in low-temperature responses |
MBS | 拟南芥 A. thaliana | TAACTG | 干旱诱导MYB结合位点 MYB binding site involved in drought-inducibility |
MRE | 荷兰芹 Petroselinum crispum | AACCTAA | MYB结合位点参与光响应 MYB binding site involved in light responses |
O2-site | 玉米 Zea mays | GATGACATGG | 玉米蛋白代谢调控顺式作用元件 cis-acting regulatory element involved in zein metabolism regulation |
Skn-1 motif | 水稻 Oryza sativa | GTCAT | 胚乳表达必需的顺式作用元件 cis-acting regulatory element required for endosperm expression |
Sp1 | 玉米 Zea mays | CC(G/A)CCC | 光响应元件 Light-responsive element |
TATA-box | 拟南芥 A. thaliana | TATA | 在转录开始前30 bp核心启动子元件 Core promoter element around -30 bp of transcription start |
TC-rich repeats | 烟草 Nicotiana tabacum | ATTTTCTCCA | 防御及胁迫响应顺式作用元件 cis-acting element involved in defense and stress responses |
TCT-motif | 拟南芥 A.s thaliana | TCTTAC | 光响应元件的一部分 Part of a light-responsive element |
circadian | 番茄 Lycopersicon esculentum | CAANNNNATC | 昼夜节律控制顺式作用元件 cis-acting regulatory element involved in circadian control |
rbcS-CMA7a | 膨胀浮萍 Lemna gibba | GTCGATAAGG | 光响应元件的一部分 Part of a light-responsive element |
图4 转基因拟南芥中AmGORK启动子活性分析 A:整株;B:根部;C:叶片表皮;D:花
Fig.4 Activity analysis of AmGORK promoter in transgenic A. thaliana A:Whole plant. B:Root. C:Leaf epidermis. D:Flower
图5 不同处理下转基因拟南芥叶片中GUS的表达分析 A:PEG处理;B:ABA处理
Fig. 5 Expression analysis of GUS gene in the transgenic A. thaliana leaves under different treatments A:PEG treatment. B:ABA treatment
[1] | 马倩, 马宝月, 穆波, 等. 植物基因启动子的克隆及分析的研究进展[J]. 中国农业文摘-农业工程, 2018, 30(3):23-29. |
Ma Q, Ma BY, Mu B, et al. Research progress on cloning and analysis of plant gene promoter[J]. Agric Sci Eng China, 2018, 30(3):23-29. | |
[2] | 杨鹏芳, 段国琴, 胡晓炜, 等. 高等植物启动子研究概述[J]. 分子植物育种, 2018, 16(5):1482-1493. |
Yang PF, Duan GQ, Hu XW, et al. Overview of higher plant promoters research[J]. Mol Plant Breed, 2018, 16(5):1482-1493. | |
[3] |
Maheshwari P, Assmann SM, Albert R. A guard cell abscisic acid(ABA)network model that captures the stomatal resting state[J]. Front Physiol, 2020, 11:927.
doi: 10.3389/fphys.2020.00927 pmid: 32903539 |
[4] |
Kuromori T, Seo M, Shinozaki K. ABA transport and plant water stress responses[J]. Trends Plant Sci, 2018, 23(6):513-522.
doi: S1360-1385(18)30085-2 pmid: 29731225 |
[5] |
Hosy E, Vavasseur A, Mouline K, et al. The Arabidopsis outward K+channel GORK is involved in regulation of stomatal movements and plant transpiration[J]. PNAS, 2003, 100(9):5549-5554.
doi: 10.1073/pnas.0733970100 URL |
[6] |
Ache P, Becker D, Ivashikina N, et al. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K +-selective, K+-sensing ion channel[J]. FEBS Lett, 2000, 486(2):93-98.
pmid: 11113445 |
[7] |
Eisenach C, Papanatsiou M, Hillert EK, et al. Clustering of the K+channel GORK of Arabidopsis parallels its gating by extracellular K+[J]. Plant J, 2014, 78(2):203-214.
doi: 10.1111/tpj.12471 URL |
[8] |
Becker D, Hoth S, Ache P, et al. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress[J]. FEBS Lett, 2003, 554(1/2):119-126.
doi: 10.1016/S0014-5793(03)01118-9 URL |
[9] |
Ooi A, Lemtiri-Chlieh F, Wong A, et al. Direct modulation of the guard cell outward-rectifying potassium channel(GORK)by abscisic acid[J]. Mol Plant, 2017, 10(11):1469-1472.
doi: 10.1016/j.molp.2017.08.010 URL |
[10] |
Lim CW, Kim SH, Choi HW, et al. The shaker type potassium channel, GORK, regulates abscisic acid signaling in Arabidopsis[J]. Plant Pathol J, 2019, 35(6):684-691.
doi: 10.5423/PPJ.OA.07.2019.0199 URL |
[11] |
Adem GD, Chen G, Shabala L, et al. GORK channel:a master switch of plant metabolism?[J]. Trends Plant Sci, 2020, 25(5):434-445.
doi: 10.1016/j.tplants.2019.12.012 URL |
[12] |
Li J, Zhang H, Lei H, et al. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus(Maxim. )Cheng F[J]. Plant Cell Rep, 2016, 35(4):803-815.
doi: 10.1007/s00299-015-1922-6 URL |
[13] | 段义忠, 杜忠毓, 亢福仁. 西北干旱区孑遗濒危植物蒙古沙冬青群落特征及与环境因子的关系[J]. 植物研究, 2018, 38(6):834-842. |
Duan YZ, Du ZY, Kang FR. Community characteristics of endangered plant of Ammopiptanthus mongolicus to environmental factors in northwest arid area of China[J]. Bull Bot Res, 2018, 38(6):834-842. | |
[14] | 马惠成, 李小伟, 杨君珑, 等. 蒙古沙冬青群落区系组成及分类研究[J]. 西北植物学报, 2020, 40(4):706-716. |
Ma HC, Li XW, Yang JL, et al. Study on the community classification and floristic composition of Ammopiptanthus mongolicus[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(4):706-716. | |
[15] | 麦尔哈巴·阿布拉, 刘博, 李征珍, 等. 蒙古沙冬青群落组成与结构研究[J]. 中央民族大学学报:自然科学版, 2019, 28(2):12-16. |
Merhaba ABLA, Liu B, Li ZZ, et al. Composition and structure of community of Ammopiptanthus mongolicus in alasan left banner, Inner Mongolia[J]. J Minzu Univ China:Nat Sci Ed, 2019, 28(2):12-16. | |
[16] |
Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. Biotechniques, 2007, 43(5):649-50, 652, 654 passim.
doi: 10.2144/000112601 URL |
[17] | 杜传慧, 付艳, 王利敏, 等. 苹果异戊烯基转移酶基因启动子调控特性研究[J]. 核农学报, 2019, 33(3):455-463. |
Du CH, Fu Y, Wang LM, et al. Regulatory characteristics of the apple isopentenyl transferase gene promoter[J]. J Nucl Agric Sci, 2019, 33(3):455-463. | |
[18] |
Han L, Li J, Jin M, et al. Functional analysis of a type 2C protein phosphatase gene from Ammopiptanthus mongolicus[J]. Gene, 2018, 653:29-42.
doi: 10.1016/j.gene.2018.02.015 URL |
[19] | 杨瑞娟, 白建荣, 李锐, 等. 诱导型启动子在植物基因工程中的研究进展[J]. 山西农业科学, 2018, 46(2):292-298. |
Yang RJ, Bai JR, Li R, et al. Research progress of the inducible promoters in plant genetic engineering[J]. J Shanxi Agric Sci, 2018, 46(2):292-298. | |
[20] | 田晨菲, 李建华, 王勇. 植物合成生物学调控元件的研究进展[J]. 植物生理学报, 2020, 56(11):2261-2274. |
Tian CF, Li JH, Wang Y. Research advances of regulatory elements in plant synthetic biology[J]. Plant Physiol J, 2020, 56(11):2261-2274. | |
[21] | 王海波, 郭俊云. 小桐子低温诱导型启动子JcDnaJ20p的克隆及烟草转化功能鉴定[J]. 生物技术通报, 2021, 37(2):24-31. |
Wang HB, Guo JY. Molecular cloning of cold-induced JcDnaJ20p promoter from Jatropha curcas and its functional identification in transgenic tobacco[J]. Biotechnol Bull, 2021, 37(2):24-31. | |
[22] | 周涛, 王娟, 胡佳蕙, 等. 番茄转录因子基因SlWRKY6的克隆与原核表达分析[J]. 西北植物学报, 2020, 40(11):1824-1832. |
Zhou T, Wang J, Hu JH, et al. Cloning and prokaryotic expression analysis of a WRKY transcription factor gene SlWRKY6 in Solanum lycopersicum[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(11):1824-1832. | |
[23] | Ma YL, Cao J, He JH, et al. Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses[J]. Int J Mol Sci, 2018, 19(11):E3643. |
[24] |
Klessig DF, Choi HW, Dempsey DA. Systemic acquired resistance and salicylic acid:past, present, and future[J]. Mol Plant Microbe Interact, 2018, 31(9):871-888.
doi: 10.1094/MPMI-03-18-0067-CR URL |
[25] |
Prodhan MY, Munemasa S, Nahar MN, et al. Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway[J]. Plant Physiol, 2018, 178(1):441-450.
doi: 10.1104/pp.18.00321 pmid: 30037808 |
[26] |
Gaymard F, Pilot G, Lacombe B, et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem Sap[J]. Cell, 1998, 94(5):647-655.
pmid: 9741629 |
[27] |
Plesch G, Ehrhardt T, Mueller-Roeber B. Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression[J]. Plant J, 2001, 28(4):455-464.
pmid: 11737782 |
[28] |
Corratgé-Faillie C, Ronzier E, Sanchez F, et al. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33[J]. FEBS Lett, 2017, 591(13):1982-1992.
doi: 10.1002/1873-3468.12687 pmid: 28543075 |
[29] |
Hedrich R, Geiger D. Biology of SLAC1-type anion channels-from nutrient uptake to stomatal closure[J]. New Phytol, 2017, 216(1):46-61.
doi: 10.1111/nph.14685 pmid: 28722226 |
[1] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[8] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[9] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[10] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[11] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[12] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[13] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[14] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[15] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||