生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 11-18.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1198
彭洁1(), 邓孟胜1, 张杰1, 刘石锋1, 罗李飞2, 王西瑶1()
收稿日期:
2020-09-22
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
彭洁,女,博士,研究方向:马铃薯休眠生理;E-mail: 基金资助:
PENG Jie1(), DENG Meng-sheng1, ZHANG Jie1, LIU Shi-feng1, LUO Li-fei2, WANG Xi-yao1()
Received:
2020-09-22
Published:
2021-05-26
Online:
2021-06-11
摘要:
Snakin-2(StSN2)属于Snakin/GASA家族,GASAs在调控植物生长发育与抗逆性具有重要作用。克隆StSN2,研究StSN2在马铃薯块茎休眠过程中的功能,为进一步探究StSN2与马铃薯块茎休眠的关系提供理论依据。以马铃薯品种“川芋10号”为材料,克隆StSN2全长CDS序列,并进行生物信息学分析,再利用qRT-PCR分析其组织表达特异性、休眠释放过程表达变化以及对激素的响应情况。结果表明,StSN2开放阅读框为315 bp,编码104个氨基酸,相对分子质量约为11.04 kD,理论等电点为8.91;马铃薯StSN2与番茄、茄子、烟草等茄科植物亲缘关系较近;烟草瞬时表达结果显示该蛋白定位于细胞核、质膜;组织表达分析表明,StSN2在各组织中均有表达,以块茎最高,其次是叶片、根,在茎、花蕾、叶柄最低;进一步研究发现,StSN2表达受ABA、BR以及GA3调控,尤其是显著响应休眠激素ABA的诱导,并且其表达随休眠的释放而降低,表明StSN2可能参与激素对马铃薯休眠的调控。
彭洁, 邓孟胜, 张杰, 刘石锋, 罗李飞, 王西瑶. 马铃薯StSN2的克隆、定位及表达分析[J]. 生物技术通报, 2021, 37(5): 11-18.
PENG Jie, DENG Meng-sheng, ZHANG Jie, LIU Shi-feng, LUO Li-fei, WANG Xi-yao. Cloning,Location and Expression Analysis of Gene StSN2 in Solanum tuberosum[J]. Biotechnology Bulletin, 2021, 37(5): 11-18.
图1 马铃薯总RNA的提取和StSN2的扩增 A:马铃薯总 RNA电泳图;B:StSN2扩增电泳图;C:菌落PCR检测电泳图。M1:DL5000 DNA Marker;M2:DL2000 DNA Marker
Fig. 1 Extraction of total RNA and amplification of StSN2 in S. tuberosum A: Potato total RNA electrophoresis. B: StSN2 amplification electrophoresis. C: colony PCR detection electrophoresis
图3 StSN2蛋白二级结构预测 紫色部分为无规则卷曲,蓝色部分为α-螺旋
Fig. 3 Prediction of secondary structure of StSN2 protein The purple part is irregularly curled, and the blue part is α-helix
图4 StSN2蛋白三级结构预测 A:StSN1三级结构 B:StSN2三级结构
Fig. 4 Prediction of tertiary structure of StSN2 protein A: StSN1 tertiary structure. B: StSN2 tertiary structure
图6 亚细胞定位图 a:融合蛋白荧光信号;b:叶绿体荧光通道;c:明场;d:明场与荧光叠加图;e:空载荧光信号;f:叶绿体荧光通道;g:明场;h:明场与荧光叠加图
Fig. 6 Subcellular localization a: Fluorescence signal of fusion protein. b: Chloroplast fluorescence channel. c: Bright field. d: Superposition of bright field and fluorescence. e: No-load fluorescence signal. f: Chloroplast fluorescence channel. g: Bright field. h: Superposition of bright field and fluorescence
图7 马铃薯不同组织中StSN2的表达分析 不同小写字母代表差异显著(P<0.05)
Fig. 7 Analysis of StSN2 expression in different tissues of S. tuberosun Different lowercase letters refer to significant differences (P<0.05)
[1] |
Alamar MC, Tosetti R, Landahl S, et al. Assuring potato tuber quality during storage:A future perspective[J]. Frontiers Plant Science, 2017,8:2034.
doi: 10.3389/fpls.2017.02034 URL |
[2] | 曾凡逵, 许丹, 刘刚. 马铃薯营养综述[J]. 中国马铃薯, 2015,4:233-243. |
Zeng FK, Xu D, Liu G. Potato nutrition:A critical review[J]. Chinese Potato Journal, 2015,4:233-243. | |
[3] | 邓孟胜, 张杰, 唐晓, 等. 马铃薯中龙葵素的研究进展[J]. 分子植物育种, 2019,7:2399-2407. |
Deng MS, Zhang J, Tang X, et al. Research progress of Solanine in potato[J]. Molecular Plant Breeding, 2019,7:2399-2407. | |
[4] | 张杰, 邓孟胜, 蔡诚诚, 等. 马铃薯StCYP734A1基因克隆、表达模式及生物信息学分析[J]. 分子植物育种, 2019,15:4883-4893. |
Zhang J, Deng MS, Cai CC, et al. Cloning, expression pattern and bioinformation analysis of StCYP734A1 gene in Solanum tuberosum[J]. Molecular Plant Breeding, 2019,15:4883-4893. | |
[5] |
Li LQ, Zou X, Deng MS, et al. Comparative morphology, transcription, and proteomics study revealing the key molecular mechanism of camphor on the potato tuber sprouting effect[J]. International Journal of Molecular Science, 2017,18(11):2280.
doi: 10.3390/ijms18112280 URL |
[6] |
Sonnewald S, Sonnewald U. Regulation of potato tuber sprouting[J]. Planta, 2014,239(1):27-38.
doi: 10.1007/s00425-013-1968-z pmid: 24100410 |
[7] |
Destefano-Beltran L, Knauber D, Huckle L, et al. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynjournal and metabolism in potato tuber tissues[J]. Plant Molecular Biological, 2006,61(4/5):687-697.
doi: 10.1007/s11103-006-0042-7 URL |
[8] |
Hauser F, Li Z, Waadt R, et al. SnapShot:abscisic acid signaling[J]. Cell, 2017,171(7):1708.
doi: S0092-8674(17)31435-6 pmid: 29245015 |
[9] |
Hu Y, Yu D. Brassinosteroid insensitive2 interacts with abscisic acid insensitive5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis[J]. The Plant Cell, 2014,26(11):4394-4408.
doi: 10.1105/tpc.114.130849 URL |
[10] |
Wang H, Tang J, Liu J, et al. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2[J]. Molecular Plant, 2018,11(2):315-325.
doi: 10.1016/j.molp.2017.12.013 URL |
[11] | 钟春梅, 王小菁. 富含半胱氨酸的GASA小分子蛋白研究进展[J]. 植物学报, 2016,1:1-8. |
Zhong CM, Wang XQ. Rogress in Cysteine-rich gibberellic acid-stimulated Arabidopsis protein[J]. Chinese Bulletin of Botany, 2016,1:1-8. | |
[12] |
Oliveira-Lima M, Benko-Iseppon AM, Neto JRCF, et al. Snakin:structure, roles and applications of a plant antimicrobial peptide[J]. Current Protein Peptide Science, 2017,18(4):368-374.
doi: 10.2174/1389203717666160619183140 URL |
[13] |
Ben-Nissan G, Lee JY, Borohov A, et al. GIP, a petunia hybrida GA-induced cysteine-rich protein:a possible role in shoot elongation and transition to flowering[J]. The Plant Journal, 2004,37(2):229-238.
doi: 10.1046/j.1365-313X.2003.01950.x URL |
[14] |
Zhang S, Yang C, Peng J, et al. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana[J]. Plant Molecular Biological, 2009,69(6):745-759.
doi: 10.1007/s11103-009-9452-7 URL |
[15] |
Wang L, Wang Z, Xu Y, et al. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice[J]. The Plant Journal, 2009,57(3):498-510.
doi: 10.1111/j.1365-313X.2008.03707.x pmid: 18980660 |
[16] |
Nahirnak V, Almasia NI, Fernandez PV, et al. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition[J]. Plant Physiology, 2012,158(1):252-263.
doi: 10.1104/pp.111.186544 URL |
[17] |
Berrocal-Lobo M, Segura A, Moreno M, et al. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection[J]. Plant Physiology, 2002,128:951-961.
doi: 10.1104/pp.010685 URL |
[18] |
Qu J, Kang SG, Hah C, et al. Molecular and cellular characterization of GA-stimulated transcripts GASA4 and GASA6 in Arabidopsis thaliana[J]. Plant Science, 2016,246:1-10.
doi: 10.1016/j.plantsci.2016.01.009 URL |
[19] | 于延申. 抑芽剂和防腐剂在马铃薯贮藏上的应用[J]. 吉林蔬菜, 2015,7:46-47. |
Yu YS. Application of bud inhibitor and preservative in potato storage[J]. Jilin Vegetable, 2015,7:46-47. | |
[20] | 彭建宗, 赖柳静, 王小菁. 非洲菊细胞壁中一种含GASA结构域的富脯氨酸蛋白[J]. 中国科学, 2008,5:458-463. |
Peng JZ, Lai LJ, Wang XJ. A proline rich protein containing GASA domain in cell wall of Gerbera jamesonii[J]. Science in China Press, 2008,5:458-463. | |
[21] |
Nahirñak V, Rivarola M, Gonzalez DUM, et al. Genome-wide analysis of the Snakin/GASA gene family in solanum tuberosum cv. Kennebec[J]. American Journal Potato Research, 2016,93(2):172-188.
doi: 10.1007/s12230-016-9494-8 URL |
[22] | Nahirnak V, Rivarola M, Almasia NI, et al. Snakin-1 affects reactive oxygen species and ascorbic acid levels and hormone balance in potato[J]. PLoS One, 2019,14(3):e214165. |
[23] | Li KL, Bai X, Lu S, et al. Expression analysis of two alkali stress related genes GsGASA1 and GsGASA2[J]. Journal of Northeast Agricultural University, 2012,1:143-148. |
[24] |
Sun S, Wang H, Yu H, et al. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation[J]. Journal of Experimental Botany, 2013,64(6):1637-1647.
doi: 10.1093/jxb/ert021 URL |
[25] |
Li L, Deng M, Lyu C, et al. Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment[J]. Food Chemistry, 2020,325:126875.
doi: 10.1016/j.foodchem.2020.126875 URL |
[26] |
Okamoto M, Kuwahara A, Seo M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidop-sis[J]. Plant Physiology, 2006,141(1):97-107.
doi: 10.1104/pp.106.079475 URL |
[27] | Marta BL, Rene T, Mar CM. eIF2α phosphorylation by GCN2 is induced in the presence of chitin and plays an important role in plant defense against B. cinerea infection[J]. Internation Journal Molecular Science, 2020,21(19), 7335. |
[1] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[2] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[5] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[8] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[9] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[10] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[11] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[12] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[13] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[14] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[15] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||