生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 104-111.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0004
张琳1,2(), 魏祯祯2, 宋程威2, 郭丽丽2, 郭琪2, 侯小改2, 王华芳1()
收稿日期:
2022-01-02
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
张琳,女,博士研究生,研究方向:牡丹生理生态与分子生物学;E-mail:基金资助:
ZHANG Lin1,2(), WEI Zhen-zhen2, SONG Cheng-wei2, GUO Li-li2, GUO Qi2, HOU Xiao-gai2, WANG Hua-fang1()
Received:
2022-01-02
Published:
2022-11-26
Online:
2022-12-01
摘要:
Flowering Locus D(FD)基因属于bZIP转录因子家族,与FT基因相互作用,在促进植物开花等方面发挥重要作用。本研究以‘凤丹’牡丹为材料,基于‘凤丹’三代全长转录组测序结果,采用RT-qPCR技术克隆PoFD基因,并进行生物信息学和表达模式分析。结果表明,克隆到的PoFD基因含有一个2 712 bp完整的ORF框,编码903个氨基酸。PoFD蛋白分子式为C8261H13722N2712O3468S552,理论等电点(pI)为4.88,为亲水蛋白,无跨膜结构,二级结构中无规则卷曲和α-螺旋所占比例较高,β-转角仅占少部分。荧光定量分析发现,PoFD基因在叶片中表达量最高,推测PoFD基因可能主要作用于叶片调控牡丹花期。牡丹不同花发育时期,PoFD基因在半开期的表达量较高,推测PoFD基因在‘凤丹’开花的中期发挥功能。不同浓度油菜素内酯(brassinosteroids,BR)激素喷施处理下,‘凤丹’牡丹花期具有不同程度的延迟,并且PoFD基因的表达均有所下降,表明PoFD基因可能响应BR调控牡丹花期。本研究为进一步研究PoFD基因在牡丹花期调控中的作用提供理论参考。
张琳, 魏祯祯, 宋程威, 郭丽丽, 郭琪, 侯小改, 王华芳. ‘凤丹’牡丹PoFD基因克隆及表达分析[J]. 生物技术通报, 2022, 38(11): 104-111.
ZHANG Lin, WEI Zhen-zhen, SONG Cheng-wei, GUO Li-li, GUO Qi, HOU Xiao-gai, WANG Hua-fang. Cloning and Expression Analysis of PoFD Gene from Paeonia ostii ‘Fengdan’[J]. Biotechnology Bulletin, 2022, 38(11): 104-111.
引物名称 Primer name | 序列 Sequence(5'-3') | 扩增目的 Amplification purpose |
---|---|---|
PoFD-F | TTTACCGGACCTGAACAC | 克隆PoFD基因 Cloning of PoFD gene |
PoFD-R | ACCCAACACCCTCATACA | |
PoFD-RT-F | ATTGTAGGCGGTAGGAGCAC | PoFD基因RT-qPCR分析 RT-qPCR assay of PoFD gene |
PoFD-RT-R | TATCAAGCACGGTCGCTGT | |
Actin-F Actin-R | GGTCTATTCTTGCTTCCCTCAG GAACTCACTATCAAACCCTCCAG | RT-qPCR内参基因 RT-qPCR reference gene |
表1 引物序列
Table 1 Primer sequence
引物名称 Primer name | 序列 Sequence(5'-3') | 扩增目的 Amplification purpose |
---|---|---|
PoFD-F | TTTACCGGACCTGAACAC | 克隆PoFD基因 Cloning of PoFD gene |
PoFD-R | ACCCAACACCCTCATACA | |
PoFD-RT-F | ATTGTAGGCGGTAGGAGCAC | PoFD基因RT-qPCR分析 RT-qPCR assay of PoFD gene |
PoFD-RT-R | TATCAAGCACGGTCGCTGT | |
Actin-F Actin-R | GGTCTATTCTTGCTTCCCTCAG GAACTCACTATCAAACCCTCCAG | RT-qPCR内参基因 RT-qPCR reference gene |
图1 ‘凤丹’PoFD基因凝胶电泳图 M:DL5000 DNA maker;1:PoFD基因的扩增产物
Fig. 1 Electrophoresis diagram of ‘Fengdan’ PoFD gene M:DL5000 DNA marker. 1:Amplified product of PoFD gene
图5 ‘凤丹’PoFD蛋白系统进化树分析 Juglans regia:胡桃,XP 018851616.1;Carya illinoinensis:美国山核桃,KAG2723443.1;Morella rubra:杨梅,KAB1219032.1;Carpius fangiana:川黔千金榆,KAE799151.1;Csatanea mollissima:板栗,KAF3951949.1;Quercus lobata:阔叶栎,XP 303929184.1;Quercus suber:栓皮栎,XP 023912111.1;Prunus dulcis:扁桃,XP 034205433.1;Ziziphus jujuba:酸枣,XP 015866666.1;Vitis riparia:葡萄,XP 034703729.1
Fig. 5 Phylogenetic tree analysis of ‘Fengdan’ PoFD protein
图6 PoFD基因在‘凤丹’不同组织中的表达分析 不同小写字母表示在0.05水平差异显著,下同
Fig. 6 Expression analysis of PoFD gene in different tissues of ‘Fengdan’ Different lowercases indicate significant differences at the 0.05 level. The same below
[1] | 洪德元, 潘开玉. 芍药属牡丹组的分类历史和分类处理[J]. 植物分类学报, 1999, 37(4):351-368. |
Hong DY, Pan KY. Taxonomical history and revision of Paeonia sect. Moutan(Paeoniaceae)[J]. Acta Phytotaxon Sin, 1999, 37(4):351-368. | |
[2] |
Zhang JJ, Shu QY, Liu ZA, et al. Two EST-derived marker systems for cultivar identification in tree peony[J]. Plant Cell Rep, 2012, 31(2):299-310.
doi: 10.1007/s00299-011-1164-1 pmid: 21987120 |
[3] | 杨礼通, 张文静, 雷映雪, 等. 推迟或提前牡丹花期的调控研究进展[J]. 四川农业科技, 2021(8):80-81, 85. |
Yang LT, Zhang WJ, Lei YX, et al. Research progress on the regulation of delaying or advancing the flowering period of tree peony[J]. Sichuan Agric Sci Technol, 2021(8):80-81, 85. | |
[4] | 石丰瑞. 牡丹长日照途径关键基因PsFT以及其上、下游基因PsCO、PsSOC1的克隆与表达分析[D]. 北京: 中国农业科学院, 2013. |
Shi FR. Cloning and expression analysis of key gene PsFT of long-day photoperiod pathway and its upstream and downstream genes PsCO, PsSOCl in tree peony(Paeonia suffruticosa andr. )[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. | |
[5] | 康圣楠, 陈曦, 张雪敏, 等. 百合花期调控研究进展[J/OL]. 分子植物育种, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210930.1435.008.html. |
Kang SN, Chen X, Zhang XM, et al. Research progress on regulation of flowering stage of Lilium brownii var[J/OL]. Mol Plant Breed, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210930.1435.008.html. | |
[6] | 李瑞英, 任崇勇, 张婷. 影响牡丹花期的主要气象因素及预测方法[J]. 现代农业科技, 2016(13):244-245. |
Li RY, Ren CY, Zhang T. Influencing meteorological factors on peony flowering and prediction method[J]. Mod Agric Sci Technol, 2016(13):244-245. | |
[7] | 周华. 基于转录组比较的牡丹开花时间基因发掘[D]. 北京: 北京林业大学, 2015. |
Zhou H. Discovery of genes associated with flowering time in tree peonies based on transcriptome comparison[D]. Beijing: Beijing Forestry University, 2015. | |
[8] | 张彦楠, 于秀立, 吕新华, 等. 棉花bZIP转录因子FD基因的发掘和GhFD基因的组织表达分析[J]. 分子植物育种, 2016, 14(9):2250-2260. |
Zhang YN, Yu XL, Lv XH, et al. Genome-wide identification of bZIP transcription factor FD genes and expression patterns analysis of GhFD genes in cotton[J]. Mol Plant Breed, 2016, 14(9):2250-2260. | |
[9] |
Varkonyi-Gasic E, Moss SMA, Voogd C, et al. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit[J]. New Phytol, 2013, 198(3):732-746.
doi: 10.1111/nph.12162 pmid: 23577598 |
[10] |
Ryu JY, Lee HJ, Seo PJ, et al. The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity[J]. Mol Plant, 2014, 7(2):377-387.
doi: 10.1093/mp/sst114 URL |
[11] |
Kawamoto N, Sasabe M, Endo M, et al. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation[J]. Sci Rep, 2015, 5:8341.
doi: 10.1038/srep08341 pmid: 25661797 |
[12] | 蔡芳芳. 二球悬铃木FT和FD同源基因的功能分析及选择性剪切初探[D]. 武汉: 华中农业大学, 2019. |
Cai FF. Functional and alternative splicing analysis of FT and FD homologous genes in Platanus acerifolia[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[13] | 曹青霞. 茶树CsFD基因克隆及其与CsFT基因在成花转变中的功能研究[D]. 西安: 陕西师范大学, 2018. |
Cao QX. The CsFD gene cloning of tea plant and the study of its function with CsFT gene in flowering transition[D]. Xi’an: Shaanxi Normal University, 2018. | |
[14] |
袁敏, 葛伟娜, 王莉, 等. 拟南芥蛋白激酶SnRK1. 1对转录因子FD的磷酸化分析[J]. 华北农学报, 2017, 32(4):37-41.
doi: 10.7668/hbnxb.2017.04.006 |
Yuan M, Ge WN, Wang L, et al. Protein kinase SnRK1. 1 phosphorylates transcriptional factor FD in Arabidopsis thaliana[J]. Acta Agric Boreali Sin, 2017, 32(4):37-41. | |
[15] |
Taoka KI, Ohki I, Tsuji H, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen[J]. Nature, 2011, 476(7360):332-335.
doi: 10.1038/nature10272 URL |
[16] |
Li ZC, Ou Y, Zhang ZC, et al. Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis[J]. Mol Plant, 2018, 11(9):1135-1146.
doi: 10.1016/j.molp.2018.06.007 URL |
[17] | 侯倩倩. MdFD基因的功能验证及苹果早花相关基因的表达分析[D]. 北京: 中国农业科学院, 2018. |
Hou QQ. Functional verification of MdFD gene and expression analysis of early flower related genes in apple[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
[18] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[19] |
Blümel M, Dally N, Jung C. Flowering time regulation in crops—what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol, 2015, 32:121-129.
doi: 10.1016/j.copbio.2014.11.023 URL |
[20] |
Vollrath P, Chawla HS, Schiessl SV, et al. A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape[J]. Theor Appl Genet, 2021, 134(4):1217-1231.
doi: 10.1007/s00122-021-03768-4 pmid: 33471161 |
[21] |
Alves MS, Dadalto SP, Gonçalves AB, et al. Plant bZIP transcription factors responsive to pathogens:a review[J]. Int J Mol Sci, 2013, 14(4):7815-7828.
doi: 10.3390/ijms14047815 URL |
[22] |
Lee BJ, Park CJ, Kim SK, et al. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter[J]. Biochem Biophys Res Commun, 2006, 344(1):55-62.
doi: 10.1016/j.bbrc.2006.03.153 URL |
[23] | 段亚宾. 牡丹开花相关基因的克隆和表达分析[D]. 洛阳: 河南科技大学, 2015. |
Duan YB. Cloning and expression of flowering genes in tree peony[D]. Luoyang: Henan University of Science and Technology, 2015. | |
[24] | 罗轩, 丛汉卿, 李丽, 等. 蜻蜓凤梨FLD同源基因的克隆及表达分析[J]. 分子植物育种, 2013, 11(3):371-378. |
Luo X, Cong HQ, Li L, et al. Cloning and expression analysis of FLD homologous gene from Aechmea fasciata[J]. Mol Plant Breed, 2013, 11(3):371-378. | |
[25] | 罗玉秀, 张生萍, 许唱唱, 等. 特早熟春性甘蓝型油菜sBnFLD基因的克隆及表达[J]. 西北农林科技大学学报:自然科学版, 2016, 44(11):90-96. |
Luo YX, Zhang SP, Xu CC, et al. Cloning and expression of sBnFLD gene from spring rapeseed(Brassica napus L.)[J]. J Northwest A&F Univ Nat Sci Ed, 2016, 44(11):90-96. | |
[26] |
Tsuji H, Nakamura H, Taoka KI, et al. Functional diversification of FD transcription factors in rice, components of florigen activation complexes[J]. Plant Cell Physiol, 2013, 54(3):385-397.
doi: 10.1093/pcp/pct005 pmid: 23324168 |
[27] |
Wigge PA, Kim MC, Jaeger KE, et al. Integration of spatial and temporal information during floral induction in Arabidopsis[J]. Science, 2005, 309(5737):1056-1059.
doi: 10.1126/science.1114358 URL |
[28] |
Li CX, Dubcovsky J. Wheat FT protein regulates VRN1 transcription through interactions with FDL2[J]. Plant J, 2008, 55(4):543-554.
doi: 10.1111/j.1365-313X.2008.03526.x URL |
[29] |
Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues[J]. Nat Rev Genet, 2012, 13(9):627-639.
doi: 10.1038/nrg3291 pmid: 22898651 |
[30] |
Dutta S, Deb A, Biswas P, et al. Identification and functional characterization of two bamboo FD gene homologs having contrasting effects on shoot growth and flowering[J]. Sci Rep, 2021, 11(1):7849.
doi: 10.1038/s41598-021-87491-6 URL |
[31] | Jang S, Choi SC, Li HY, et al. Functional characterization of Phalaenopsis aphrodite flowering genes PaFT1 and PaFD[J]. PLoS One, 2015, 10(8):e0134987. |
[32] | 张玲. 枇杷花期调控的分子生物学研究[D]. 广州: 华南农业大学, 2016. |
Zhang L. Studies on molecular mechanism of loquat flowering time regulation[D]. Guangzhou: South China Agricultural University, 2016. |
[1] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[8] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[9] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[10] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[11] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[12] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[13] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[14] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[15] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||