生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 97-103.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0114
收稿日期:
2022-01-25
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
王树萱,男,硕士研究生,研究方向:肿瘤免疫;E-mail: 基金资助:
WANG Shu-xuan1(), XIANG Gang1, MA Xiao-jing2(), YU Jing1()
Received:
2022-01-25
Published:
2022-11-26
Online:
2022-12-01
摘要:
探查galectin-1促癌作用的广泛性,并为进一步研究该基因在三阴性乳腺癌中促癌转移的分子作用机制提供必要的实验工具和依据。采用生物信息学方法去分析多种癌症病人样本中该基因的表达情况,及其与乳腺癌病人总体生存率的关系;通过慢病毒转染去构建galectin-1过表达的4T1细胞株,并检测该基因对细胞增殖(CCK8检测法)、迁移和侵袭(Transwell检测法)的影响。研究结果显示,galectin-1在乳腺癌和淋巴癌等多种癌症中呈现高表达状态,且与乳腺癌病人的总体生存率呈负相关。同时,galectin-1过表达三阴性乳腺癌4T1细胞株被成功构建。Galectin-1的过表达能够显著促进4T1肿瘤细胞的增殖、迁移和侵袭。这些都显示了galectin-1是一个对乳腺癌等多种癌症具有促癌作用,并能促进三阴性乳腺癌细胞体外增殖和转移的因子。
王树萱, 向钢, 马小京, 于晶. Galectin-1的4T1乳腺癌过表达细胞的构建及其对增殖和转移的影响[J]. 生物技术通报, 2022, 38(11): 97-103.
WANG Shu-xuan, XIANG Gang, MA Xiao-jing, YU Jing. Construction of Galectin-1 Overexpressing 4T1 Mammary Tumor Cells and Its Effects on the Proliferation and Migration[J]. Biotechnology Bulletin, 2022, 38(11): 97-103.
基因 Gene | 引物序列 Primer sequence(5'-3') |
---|---|
Lgals1 | F:AACCTGGGGAATGTCTCAAAGT |
R:GGTGATGCACACCTCTGTGA | |
Gapdh | F:AGGTCGGTGTGAACGGATTTG |
R:TGTAGACCATGTAGTTGAGGTCA |
表1 Lgals1和Gapdh引物序列
Table 1 Lgals1 and Gapdh primer sequences
基因 Gene | 引物序列 Primer sequence(5'-3') |
---|---|
Lgals1 | F:AACCTGGGGAATGTCTCAAAGT |
R:GGTGATGCACACCTCTGTGA | |
Gapdh | F:AGGTCGGTGTGAACGGATTTG |
R:TGTAGACCATGTAGTTGAGGTCA |
图1 生物信息学数据库分析galectin-1在乳腺癌中的表达及其对乳腺癌患者总体生存率的关联关系 A:Oncomine数据库分析多种癌症中galectin-1的表达(黄色长框表示乳腺癌,数字表示研究样本数量。红色越深代表基因表达越高,蓝色越深代表表达越低);B:Oncomine数据库中Zhao Breast数据集分析galectin-1在正常组织与乳腺癌肿瘤组织中mRNA的表达差异;C:GEO数据库GSE54140数据集分析的不同乳腺癌亚型中galectin-1基因拷贝数的差异;D-E:Kaplan-Meier分析galectin-1的表达分别与(D)乳腺癌患者和(E)三阴性乳腺癌患者总体生存率的相关性
Fig. 1 Bioinformatics database analysis of the expression of galectin-1 in breast cancer and the correlation of it with overall survival rate of breast cancer patients A:Oncomine database analysis of galectin-1 expression in various cancers(The long yellow box indicates breast cancer;the number indicates the amounts of samples that galectin-1 was analyzed in different cancers. Darker red indicates higher gene expression,darker blue indicates lower expression). B:Oncomine database analysis of differential mRNA expression of galectin-1 in normal and tumor tissues in Zhao Breast dataset. C:GEO database(GSE54140 data set)analysis of copy number variation of galectin-1 gene in different breast cancer subtypes. D-E:Kaplan-Meier analysis of the correlation between galectin-1 expression and the overall survival rate of(D)breast cancer patients and(E)TNBC patients
图2 Galactin-1表达质粒pCDH-Lgals1构建的酶切及测序分析图 A:琼脂糖凝胶电泳图分析pCDH载体和Lgals1 PCR扩增产物的酶切图。1:15000 DNA 标准品;2:pCDH载体酶切;3:Lgals1 PCR扩增产物酶切;B:构建的表达质粒中galectin-1基因的测序比对结果(红框内序列为6×His的标签)
Fig. 2 Digestion and sequencing analysis of the galactin-1-expressed plasmid pCDH-Lgals1 A:Agarose gel electrophoresis of the digestion of pCDH vector and PCR amplification products of Lgals1. 1:15000 DNA ladder;2:pCDH digestion vector;3:Lgals1 PCR products. B:Alignment of DNA sequencing results of galectin-1 in the constructed expression plasmid(the sequence of 6×His tag is shown in red box)
图3 qPCR和Western Blot检测galectin-1在galectin-1过表达4T1细胞中的过表达水平 A:qPCR检测galectin-1过表达4T1细胞株中galectin-1的mRNA水平;B:Western Blot分析galectin-1过表达4T1细胞株中galectin-1的蛋白水平;C:B图的定量图
Fig. 3 qPCR and Western Blot analysis of galectin-1 in galectin-1 overexpressing 4T1 cells A:qPCR analysis of mRNA levels of galectin-1 in galectin-1 overexpressing 4T1 cell line. B:Western Blot analysis of protein levels of galectin-1 in galectin-1 overexpressing 4T1 cells. C:Quantitative diagram of the B chart
图5 过表达galectin-1对三阴性乳腺癌4T1细胞迁移和侵袭的促进作用 A:细胞迁移实验;B:细胞侵袭实验(左边两图为显微镜镜检结果,右图为镜检定量图)
Fig. 5 Overexpression of galectin-1 promotes the migration and invasion of triple-negative breast cancer 4T1 cells A:Transwell migration assay. B:Transwell invasion assay
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1):7-30.
doi: 10.3322/caac.21590 URL |
[2] |
Liao LQ, Song M, Li X, et al. E3 ubiquitin ligase UBR5 drives the growth and metastasis of triple-negative breast cancer[J]. Cancer Res, 2017, 77(8):2090-2101.
doi: 10.1158/0008-5472.CAN-16-2409 pmid: 28330927 |
[3] |
Shi JH, Liu FQ, Song YQ. Progress: targeted therapy, immunotherapy, and new chemotherapy strategies in advanced triple-negative breast cancer[J]. Cancer Manag Res, 2020, 12: 9375-9387.
doi: 10.2147/CMAR.S272685 pmid: 33061626 |
[4] |
Lyons TG. Targeted therapies for triple-negative breast cancer[J]. Curr Treat Options Oncol, 2019, 20(11):82.
doi: 10.1007/s11864-019-0682-x URL |
[5] | Núñez Abad M, Calabuig-Fariñas S, Lobo de Mena M, et al. Update on systemic treatment in early triple negative breast cancer[J]. Ther Adv Med Oncol, 2021, 13: 1758835920986749. |
[6] |
Yin L, Duan JJ, Bian XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress[J]. Breast Cancer Res, 2020, 22(1):61.
doi: 10.1186/s13058-020-01296-5 pmid: 32517735 |
[7] |
Sporikova Z, Koudelakova V, Trojanec R, et al. Genetic markers in triple-negative breast cancer[J]. Clin Breast Cancer, 2018, 18(5):e841-e850.
doi: 10.1016/j.clbc.2018.07.023 URL |
[8] |
Hirbe AC, Gutmann DH. Understanding a complicated gal-1[J]. Neuro-Oncology, 2019, 21(11):1341-1343.
doi: 10.1093/neuonc/noz165 pmid: 31538650 |
[9] |
Shih TC, Liu R, Wu CT, et al. Targeting galectin-1 impairs castration-resistant prostate cancer progression and invasion[J]. Clin Cancer Res, 2018, 24(17):4319-4331.
doi: 10.1158/1078-0432.CCR-18-0157 URL |
[10] |
Zhang P, Zhang P, Shi B, et al. Galectin-1 overexpression promotes progression and chemoresistance to cisplatin in epithelial ovarian cancer[J]. Cell Death Dis, 2014, 5(1):e991.
doi: 10.1038/cddis.2013.526 URL |
[11] | Zhu J, Zheng Y, Zhang HY, et al. Galectin-1 induces metastasis and epithelial-mesenchymal transition(EMT) in human ovarian cancer cells via activation of the MAPK JNK/p38 signalling pathway[J]. Am J Transl Res, 2019, 11(6):3862-3878. |
[12] |
Tang D, Yuan ZX, Xue XF, et al. High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer[J]. Int J Cancer, 2012, 130(10):2337-2348.
doi: 10.1002/ijc.26290 pmid: 21780106 |
[13] |
Dalotto-Moreno T, Croci DO, Cerliani JP, et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease[J]. Cancer Res, 2013, 73(3):1107-1117.
doi: 10.1158/0008-5472.CAN-12-2418 pmid: 23204230 |
[14] | Zhu X, Wang K, Zhang K, et al. Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression[J]. Acta Biochim Biophys Sin(Shanghai), 2016, 48(5):462-467. |
[15] |
Zhao HJ, Langerød A, Ji Y, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast[J]. Mol Biol Cell, 2004, 15(6):2523-2536.
pmid: 15034139 |
[16] |
Ito K, Park SH, Nayak A, et al. PTK6 inhibition suppresses metastases of triple-negative breast cancer via SNAIL-dependent E-cadherin regulation[J]. Cancer Res, 2016, 76(15):4406-4417.
doi: 10.1158/0008-5472.CAN-15-3445 pmid: 27302163 |
[17] |
Huang YY, Wang HC, Zhao JW, et al. Immunosuppressive roles of galectin-1 in the tumor microenvironment[J]. Biomolecules, 2021, 11(10):1398.
doi: 10.3390/biom11101398 URL |
[18] |
Perillo NL, Pace KE, Seilhamer JJ, et al. Apoptosis of T cells mediated by galectin-1[J]. Nature, 1995, 378(6558):736-739.
doi: 10.1038/378736a0 URL |
[19] | 张丽娜, 杨艳芳, 姜战胜. PD-1/PD-L1抑制剂治疗三阴性乳腺癌的研究进展[J]. 中国肿瘤生物治疗杂志, 2021, 28(8):844-849. |
Zhang LN, Yang YF, Jiang ZS. Research progress on PD-1/PD-L1 inhibitors in the treatment of triple-negative breast cancer[J]. Chin J Cancer Biotherapy, 2021, 28(8):844-849. |
[1] | 马钰静, 段春辉, 贺名扬, 张英杰, 杨若晨, 王泳, 刘月琴. 敲除G0S2基因对绵羊卵巢颗粒细胞增殖、类固醇激素及相关基因表达的影响[J]. 生物技术通报, 2023, 39(6): 325-334. |
[2] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[3] | 杨小峰, 秦小伟, 郭泽媛, 吕丽华. 原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响[J]. 生物技术通报, 2022, 38(9): 258-263. |
[4] | 杨昕冉, 王建芳, 马鑫浩, 昝林森. m6A甲基化修饰相关酶基因在牛脂肪生成中的表达分析[J]. 生物技术通报, 2022, 38(7): 70-79. |
[5] | 盛雪晴, 赵楠, 林亚秋, 陈定双, 王瑞龙, 李傲, 王永, 李艳艳. 山羊ZNF32的克隆及表达分析[J]. 生物技术通报, 2022, 38(12): 300-311. |
[6] | 金秋霞, 王思宏, 金丽华. 果蝇肠道干细胞及肠道菌群的研究进展[J]. 生物技术通报, 2021, 37(4): 245-250. |
[7] | 黄海辰, 吴文雅, 戚梦, 薛帆正, 吴小平, 张君丽, 傅俊生. 虫草素抗三阴性乳腺癌的转录组学分析[J]. 生物技术通报, 2021, 37(11): 72-80. |
[8] | 郑芳芳, 林俊生. 增殖诱导配体蛋白的核酸适配体筛选与特异性研究[J]. 生物技术通报, 2021, 37(10): 196-202. |
[9] | 杨雷, 叶洲杰, 李兆龙, 沈阳坤, 傅雅娟. 利用电转的方法对T细胞TET2基因敲除并探讨TET2对T细胞增殖的影响[J]. 生物技术通报, 2020, 36(1): 229-237. |
[10] | 陈子涵, 刘金娟. 六种食用菌体外抗氧化及抗细胞增殖活性研究[J]. 生物技术通报, 2019, 35(11): 104-108. |
[11] | 李平, 张桂萍 ,胡建燃. 连翘总黄酮对胃癌细胞MGC80-3增殖的影响[J]. 生物技术通报, 2018, 34(6): 199-203. |
[12] | 董颖, 胡红霞, 田照辉, 王巍, 东天. 鲟鱼外周血淋巴细胞的分离及最佳体外增殖性反应条件[J]. 生物技术通报, 2018, 34(3): 150-155. |
[13] | 袁白银, 刘钟颖. EDU脉冲追踪小鼠心脏第二心场细胞迁移方法的优化[J]. 生物技术通报, 2018, 34(12): 84-89. |
[14] | 袁白银, 胡继盛, 刘钟颖, 黄霞. 敲除Wdr1抑制小鼠原代血管平滑肌细胞的迁移和增殖[J]. 生物技术通报, 2018, 34(12): 179-185. |
[15] | 郭红艳, 高涵, 吴琦, 孙晓杰, 刘秀财, 赵立群. SGK3基因RNAi慢病毒载体的构建及其对乳腺癌MB-474细胞增殖和凋亡的影响[J]. 生物技术通报, 2018, 34(1): 247-252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||