生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 289-296.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1600s
收稿日期:
2021-07-10
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
郭晓真,硕士,研究方向:信息资源管理;E-mail: GUO Xiao-zhen(), ZHANG Xue-fu()
Received:
2021-07-10
Published:
2022-02-26
Online:
2022-03-09
摘要:
合成生物学作为一种颠覆性技术可应用于农业领域的创新发展,解决当前农业学科中的瓶颈问题。利用文献计量学方法从领域发表论文的时序数量分布、主题分布等探测当前合成生物学的基本态势。基于领域的主题分布可知,其中植物合成生物学这一主题是稳定存在的且主题规模处于稳定增长趋势。聚焦植物合成生物学这一主题方向,在构建引文网络的基础上利用主路径分析方法从知识流动角度探测植物合成生物学领域重要知识节点,内容涵盖介子油苷生物合成途径,重要催化酶功能解析、转录因子的调控作用,组学方法的应用,利用微生物酵母进行生物物质合成,这些内容表征了合成生物的核心理论技术。
郭晓真, 张学福. 植物合成生物学领域发展态势的文献计量分析[J]. 生物技术通报, 2022, 38(2): 289-296.
GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology[J]. Biotechnology Bulletin, 2022, 38(2): 289-296.
启动时间 Start-up time | 项目名称 Project |
---|---|
2011年 | 人工合成细胞工厂 |
光合作用与人工叶片 | |
2012年 | 新功能人造生物器件的构建与集成 |
微生物药物创新与优产的人工合成体系 | |
用合成生物学方法构建生物基材料的合成新途径 | |
2013年 | 合成微生物体系的适配性研究 |
抗逆元器件的构建和机理研究 | |
2014年 | 合成生物器件干预膀胱癌的研究 |
微生物多细胞体系的设计与合成 | |
2015年 | 生物固氮及相关抗逆模块的人工设计与系统优化 |
表1 “973”计划支持的合成生物学相关项目
Table 1 Synthetic biology related projects supported by “973” program
启动时间 Start-up time | 项目名称 Project |
---|---|
2011年 | 人工合成细胞工厂 |
光合作用与人工叶片 | |
2012年 | 新功能人造生物器件的构建与集成 |
微生物药物创新与优产的人工合成体系 | |
用合成生物学方法构建生物基材料的合成新途径 | |
2013年 | 合成微生物体系的适配性研究 |
抗逆元器件的构建和机理研究 | |
2014年 | 合成生物器件干预膀胱癌的研究 |
微生物多细胞体系的设计与合成 | |
2015年 | 生物固氮及相关抗逆模块的人工设计与系统优化 |
节点 | 内容解读 |
---|---|
Wittstock U(2000) | Cytochrome P450CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate |
Mikkelsen MD(2000) | Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime,a precursor of indole glucosinolates and indole-3-acetic acid |
Hansen CH(2001) | Cytochrome P450CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates |
Mikkelsen MD(2003) | Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways |
Mikkelsen MD(2004) | Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis |
Grubb CD(2004) | Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis |
Levy M(2005) | Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense |
Skirycz A(2006) | DOF transcription factor AtDof1.1(OBP2)is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis |
Gigolashvili T(2007) | The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana |
Sonderby IE(2007) | A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates |
Malitsky S(2008) | The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators |
Sawada Y(2009) | Omics-Based approaches to methionine side chain elongation in Arabidopsis:Characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase |
Sawada Y(2009) | Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis |
Albinsky D(2010) | Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis |
Sonderby IE(2010) | A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis1[C][W][OA] |
Pfalz M(2011) | Metabolic engineering in nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification |
Mikkelsen MD(2012) | Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform |
Fossati E(2014) | Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae |
Trenchard IJ(2015) | De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast |
DeLoache WC(2015) | An enzyme-coupled biosensor enables(S)-reticuline production in yeast from glucose |
Galanie S(2015) | Optimization of yeast-based production of medicinal protoberberine alkaloids |
Li YR(2018) | Complete biosynthesis of noscapine and halogenated alkaloids in yeast |
Wang Y(2019) | Design and use of de novo cascades for the biosynthesis of new benzylisoquinoline alkaloids |
Cabry MP(2019) | Structure of Papaver somniferum O-methyltransferase 1 reveals initiation of noscapine biosynthesis with implications for plant natural product methylation |
Lang DE(2019) | Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition |
表2 2010-2019年主路径节点内容解析
Table 2 Content analysis of main path nodes in year 2010-2019
节点 | 内容解读 |
---|---|
Wittstock U(2000) | Cytochrome P450CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate |
Mikkelsen MD(2000) | Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime,a precursor of indole glucosinolates and indole-3-acetic acid |
Hansen CH(2001) | Cytochrome P450CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates |
Mikkelsen MD(2003) | Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways |
Mikkelsen MD(2004) | Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis |
Grubb CD(2004) | Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis |
Levy M(2005) | Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense |
Skirycz A(2006) | DOF transcription factor AtDof1.1(OBP2)is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis |
Gigolashvili T(2007) | The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana |
Sonderby IE(2007) | A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates |
Malitsky S(2008) | The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators |
Sawada Y(2009) | Omics-Based approaches to methionine side chain elongation in Arabidopsis:Characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase |
Sawada Y(2009) | Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis |
Albinsky D(2010) | Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis |
Sonderby IE(2010) | A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis1[C][W][OA] |
Pfalz M(2011) | Metabolic engineering in nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification |
Mikkelsen MD(2012) | Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform |
Fossati E(2014) | Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae |
Trenchard IJ(2015) | De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast |
DeLoache WC(2015) | An enzyme-coupled biosensor enables(S)-reticuline production in yeast from glucose |
Galanie S(2015) | Optimization of yeast-based production of medicinal protoberberine alkaloids |
Li YR(2018) | Complete biosynthesis of noscapine and halogenated alkaloids in yeast |
Wang Y(2019) | Design and use of de novo cascades for the biosynthesis of new benzylisoquinoline alkaloids |
Cabry MP(2019) | Structure of Papaver somniferum O-methyltransferase 1 reveals initiation of noscapine biosynthesis with implications for plant natural product methylation |
Lang DE(2019) | Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition |
[1] | 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学:生命科学, 2019, 49(12):1543-1572. |
Zhang XE. Synthetic biology in China:Review and prospects[J]. Scientia Sinica(Vitae): 2019, 49(12):1543-1572. | |
[2] | 江会锋. 合成生物技术助力可持续发展[J]. 生物技术通报, 2020, 36(4):1-2. |
Jiang HF. Synthetic biotechnology boosts sustainable development[J]. Biotechnology Bulletin, 2020, 36(4):1-2. | |
[3] |
Si T, Zhao HM. A brief overview of synthetic biology research programs and roadmap studies in the United States[J]. Synthetic and Systems Biotechnology, 2016, 1(4):258-264.
doi: 10.1016/j.synbio.2016.08.003 URL |
[4] |
Clarke LJ, Kitney RI. Synthetic biology in the UK - An outline of plans and progress[J]. Synthetic and Systems Biotechnology, 2016, 1(4):243-257.
doi: 10.1016/j.synbio.2016.09.003 pmid: 29062950 |
[5] | 陈国强, 王颖. 中国“合成生物学”973 项目研究进展[J]. 生物工程学报, 2015, 31(6):995-1008. |
Chen GQ, Wang Y. Progress in synthetic biology of “973 Funding Program” in China[J]. Chin J Biotech June, 2015, 31(6):995-1008. | |
[6] | 孙晓, 杨鹏, 王虹扬. 农业绿色发展研究文献计量分析[J]. 中国农业资源与区划, 2021, 42(2):1-9. |
Sun X, Yang P, Wang HY. Bibliometric analysis of agricultural green development[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2):1-9. | |
[7] | 马瑞敏, 杨雨华. 基于节点重要性的领域主路径发现新探索[J]. 情报杂志, 2018(3):71-78, 93. |
Ma RM, Yang YH. Discovering main path of a domain based on node importance[J]. Journal of Intelligence, 2018, 37(3):71-78, 93. | |
[8] |
Yang G, Zheng Q, Hu P, et al. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat-Thinopyrum intermedium translocation line WTT11[J]. aBIOTECH, 2021, 2:343-356.
doi: 10.1007/s42994-021-00060-3 URL |
[9] | Sun L, Wen J, Peng H, et al. The genetic and molecular basis for improving heat stress tolerance in wheat[J]. aBIOTECH, 2021, https://doi.org/10.1007/s42994-021-00064-z . |
[10] | 种康, 许智宏, 李家洋. 中国植物科学基础研究概[J]. 中国基础科学, 2016, 18(1):7-12. |
Chong K, Xu ZH, Li JY. Basic research panorama of plant science in China[J]. China Basic Science, 2016, 18(1):7-12. | |
[11] |
Mikkelsen MD. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways[J]. Plant Physiology, 2003, 131(1):298.
pmid: 12529537 |
[12] |
Mikkelsen MD, Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform[J]. Metabolic Engineering, 2012, 14(2):104-111.
doi: 10.1016/j.ymben.2012.01.006 pmid: 22326477 |
[13] | Fossati E. Reconstitution of a 10-gene pathway for synjournal of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisi-ae[J]. Nature Communications, 2014, 5. |
[14] |
Sun T, Zhu Q, Wei Z, et al. Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Ara-bidopsis seeds[J]. aBIOTECH, 2021, 2(3):191-214.
doi: 10.1007/s42994-021-00046-1 URL |
[15] |
张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8):1-11.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0861 |
Zhang F, Chen W. Research progress of metabolomics in plant stress biology[J]. Biotechnology Bulletin, 2021, 37(8):1-11. | |
[16] | 薛勇彪, 韩斌, 种康, 等. 水稻分子模块设计研究成果与展望[J]. 中国科学院院刊, 2018, 33(9):900-908. |
Xue YB, Han B, Chong K, et al. Achievements and prospect of designer breeding by molecular modules in rice[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9):900-908. | |
[17] |
Li J, Li Y, Ma L. Recent advances in CRISPR/Cas9 and applicati-ons for wheat functional genomics and breeding[J]. aBIOTECH, 2012, 2(3):375-385.
doi: 10.1007/s42994-021-00042-5 URL |
[1] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[2] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[3] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[4] | 任海伟, 孙一帆, 任雨薇, 郭晓鹏, 潘立超, 张丙云, 李金平. 基于文献计量的青贮添加剂研究进展[J]. 生物技术通报, 2022, 38(8): 261-274. |
[5] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[6] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[7] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[8] | 乌吉斯古楞, 李晓曼, 张学福. 我国禽流感病毒防控研究态势及热点分析——基于OIE禽流感参考实验室影响力视角[J]. 生物技术通报, 2020, 36(7): 139-147. |
[9] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[10] | 常瀚文, 郑鑫铃, 骆健美, 王敏, 申雁冰. 抗逆元件及其在高效微生物细胞工厂构建中的应用进展[J]. 生物技术通报, 2020, 36(6): 13-34. |
[11] | 张慧, 田方方, 吴毅. 合成型酵母基因组重排技术[J]. 生物技术通报, 2020, 36(4): 13-18. |
[12] | 曹燕亭, 刘延峰, 李江华, 刘龙, 堵国成. 基于细胞亚群调控提升生物合成效率的研究进展[J]. 生物技术通报, 2020, 36(4): 19-25. |
[13] | 李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207. |
[14] | 刘新平, 谭玉萌, 张雪, 冯雁, 杨广宇. 神经节苷脂氟化寡糖在大肠杆菌中的生物合成[J]. 生物技术通报, 2019, 35(8): 162-169. |
[15] | 刘洋儿, 郭明璋, 杜若曦, 贺晓云, 黄昆仑, 许文涛. 乳酸菌在合成生物学中的研究现状及展望[J]. 生物技术通报, 2019, 35(8): 193-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||