生物技术通报 ›› 2022, Vol. 38 ›› Issue (5): 13-21.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0138
• 堆肥微生物专题(专题主编: 王禄山 教授) • 上一篇 下一篇
收稿日期:
2022-01-28
出版日期:
2022-05-26
发布日期:
2022-06-10
作者简介:
王孝芳,女,博士,副教授,研究方向:根际微生物生态,农业废弃物资源化;E-mail: 基金资助:
WANG Xiao-fang(), WAN Jin-xin, WEI Zhong, XU Yang-chun(), SHEN Qi-rong
Received:
2022-01-28
Published:
2022-05-26
Online:
2022-06-10
摘要:
为了满足日常肉蛋奶的需求,畜禽养殖业快速发展,与此同时产生的大量畜禽粪便亟需处理。堆肥作为一种高效、无害化、资源化的处理方式,被广泛应用于畜禽粪便的处理。畜禽粪便堆肥是通过微生物活动,将不稳定的有机物质分解转化合成为稳定的腐殖质的过程。了解微生物群落演替的基本规律,是发展堆肥新方法与理论的重要基础。论文梳理了畜禽粪便堆肥不同阶段中微生物群落结构和功能演替规律,总结了堆肥起始物料的特性(含水量、pH、C/N等)和人为活动(翻堆曝气、菌剂接种)对堆肥微生物群落演替的影响,比较了当前堆肥微生物群落的研究方法。提出了未来畜禽粪便堆肥研究值得重视的科学问题和研究方向,为指导未来的工作提供支持。
王孝芳, 万金鑫, 韦中, 徐阳春, 沈其荣. 畜禽粪便堆肥过程中微生物群落演替[J]. 生物技术通报, 2022, 38(5): 13-21.
WANG Xiao-fang, WAN Jin-xin, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Succession of Microbial Communities During Livestock Manure Composting[J]. Biotechnology Bulletin, 2022, 38(5): 13-21.
[1] | 李莉, 杨昕涧, 何家俊, 等. 我国畜禽粪便资源化利用的现状及展望[J]. 中国奶牛, 2020(11):55-60. |
Li L, Yang XJ, He JJ, et al. The present situation and prospect of utilization technology of animal manure resources[J]. China Dairy Cattle, 2020(11):55-60. | |
[2] | 耿秀华, 单元杰. 畜禽粪污资源化利用研究[J]. 中国资源综合利用, 2020, 38(12):80-82. |
Geng XH, Shan YJ. Research on resource utilization of livestock manure[J]. China Resour Compr Util, 2020, 38(12):80-82. | |
[3] | 魏兆堂. 堆肥技术在粪污资源化利用中的应用[J]. 中国畜禽种业, 2019, 15(5):38-39. |
Wei ZT. Application of composting technology in the utilization of manure resources[J]. Chin Livest Poult Breed, 2019, 15(5):38-39. | |
[4] |
Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresour Technol, 2009, 100(22):5444-5453.
doi: 10.1016/j.biortech.2008.11.027 URL |
[5] |
Dias BO, Silva CA, Higashikawa FS, et al. Use of biochar as bulking agent for the composting of poultry manure:effect on organic matter degradation and humification[J]. Bioresour Technol, 2010, 101(4):1239-1246.
doi: 10.1016/j.biortech.2009.09.024 URL |
[6] |
Duan YM, Awasthi SK, Chen HY, et al. Evaluating the impact of bamboo biochar on the fungal community succession during chicken manure composting[J]. Bioresour Technol, 2019, 272:308-314.
doi: 10.1016/j.biortech.2018.10.045 URL |
[7] |
Duan YM, Awasthi SK, Liu T, et al. Dynamics of fungal diversity and interactions with environmental elements in response to wheat straw biochar amended poultry manure composting[J]. Bioresour Technol, 2019, 274:410-417.
doi: 10.1016/j.biortech.2018.12.020 URL |
[8] | Trautmann N, Olynciw E. Compost microorganisms[J]. Cornell Composting University. Available from: http://compost.css.cornell.edu/microorg.html, 2000 |
[9] |
Neher DA, Weicht TR, Bates ST, et al. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times[J]. PLoS One, 2013, 8(11):e79512.
doi: 10.1371/journal.pone.0079512 URL |
[10] |
Singh S, Nain L. Microorganisms in the conversion of agricultural wastes to compost[J]. Proc Indian Natl Sci Acad, 2014, 80(2):473.
doi: 10.16943/ptinsa/2014/v80i2/4 URL |
[11] | Azhdarpoor A, Mortazavi B, Moussavi G. Oily wastewaters treatment using Pseudomonas sp. isolated from the compost fertilizer[J]. J Environ Heal Sci Eng, 2014, 12:77. |
[12] |
Wang WK, Liang CM. Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation[J]. Sci Rep, 2021, 11(1):6103.
doi: 10.1038/s41598-021-85615-6 URL |
[13] |
Liu L, Wang SQ, Guo XP, et al. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting[J]. Waste Manag, 2018, 73:101-112.
doi: 10.1016/j.wasman.2017.12.026 URL |
[14] |
Charest MH, Antoun H, Beauchamp CJ. Dynamics of water-soluble carbon substances and microbial populations during the composting of de-inking paper sludge[J]. Bioresour Technol, 2004, 91(1):53-67.
doi: 10.1016/S0960-8524(03)00155-X URL |
[15] |
Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health[J]. Microb Pathog, 2017, 111:458-467.
doi: 10.1016/j.micpath.2017.09.036 URL |
[16] |
Tiquia SM, Wan HC, Tam NFY. Microbial population dynamics and enzyme activities during composting[J]. Compost Sci Util, 2002, 10(2):150-161.
doi: 10.1080/1065657X.2002.10702075 URL |
[17] |
Li CN, Li HY, Yao T, et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw[J]. Bioresour Technol, 2019, 289:121653.
doi: 10.1016/j.biortech.2019.121653 URL |
[18] |
Zhou GX, Xu XF, Qiu XW, et al. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure[J]. Bioresour Technol, 2019, 272:10-18.
doi: 10.1016/j.biortech.2018.09.135 URL |
[19] |
Wang XF, Wan JX, Jiang GF, et al. Compositional and functional succession of bacterial and fungal communities is associated with changes in abiotic properties during pig manure composting[J]. Waste Manag, 2021, 131:350-358.
doi: 10.1016/j.wasman.2021.06.023 URL |
[20] |
Floudas D, Binder M, Riley R, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes[J]. Science, 2012, 336(6089):1715-1719.
doi: 10.1126/science.1221748 URL |
[21] |
Zhang LL, Ma HX, Zhang HQ, et al. Thermomyces lanuginosus is the dominant fungus in maize straw composts[J]. Bioresour Technol, 2015, 197:266-275.
doi: 10.1016/j.biortech.2015.08.089 URL |
[22] |
Mishra C, Keskar S, Rao M. Production and properties of extracellular endoxylanase from Neurospora crassa[J]. Appl Environ Microbiol, 1984, 48(1):224-228.
doi: 10.1128/aem.48.1.224-228.1984 URL |
[23] |
Sun JP, Tian CG, Diamond S, et al. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa[J]. Eukaryot Cell, 2012, 11(4):482-493.
doi: 10.1128/EC.05327-11 URL |
[24] |
Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization:fundamentals and biotechnology[J]. Microbiol Mol Biol Rev, 2002, 66(3):506-577.
doi: 10.1128/MMBR.66.3.506-577.2002 URL |
[25] |
Gu WJ, Lu YS, Tan ZY, et al. Fungi diversity from different depths and times in chicken manure waste static aerobic composting[J]. Bioresour Technol, 2017, 239:447-453.
doi: 10.1016/j.biortech.2017.04.047 URL |
[26] |
Meng QX, Yang W, Men MQ, et al. Microbial community succession and response to environmental variables during cow manure and corn straw composting[J]. Front Microbiol, 2019, 10:529.
doi: 10.3389/fmicb.2019.00529 URL |
[27] |
Wang K, Mao HL, Li XK. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent[J]. Bioresour Technol, 2018, 249:527-535.
doi: 10.1016/j.biortech.2017.10.034 URL |
[28] |
Mao HL, Wang K, Wang Z, et al. Metabolic function, trophic mode, organics degradation ability and influence factor of bacterial and fungal communities in chicken manure composting[J]. Bioresour Technol, 2020, 302:122883.
doi: 10.1016/j.biortech.2020.122883 URL |
[29] |
Kittl R, Mueangtoom K, Gonaus C, et al. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris[J]. J Biotechnol, 2012, 157(2):304-314.
doi: 10.1016/j.jbiotec.2011.11.021 URL |
[30] |
Caretta G, Piontelli E, Savino E, et al. Some coprophilous fungi from Kenya[J]. Mycopathologia, 1998, 142(3):125-134.
pmid: 16284849 |
[31] |
Robledo-Mahón, Gómez-Silván C, Andersen GL, et al. Assessment of bacterial and fungal communities in a full-scale thermophilic sewage sludge composting pile under a semipermeable cover[J]. Bioresour Technol, 2020, 298:122550.
doi: 10.1016/j.biortech.2019.122550 URL |
[32] |
Geisen S, Mitchell EAD, Adl S, et al. Soil protists:a fertile frontier in soil biology research[J]. FEMS Microbiol Rev, 2018, 42(3):293-323.
doi: 10.1093/femsre/fuy006 URL |
[33] |
Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen[J]. Soil Biol Biochem, 1985, 17(2):181-187.
doi: 10.1016/0038-0717(85)90113-0 URL |
[34] |
Trap J, Bonkowski M, Plassard C, et al. Ecological importance of soil bacterivores for ecosystem functions[J]. Plant Soil, 2016, 398(1/2):1-24.
doi: 10.1007/s11104-015-2671-6 URL |
[35] |
Zhao ZB, He JZ, Geisen S, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils[J]. Microbiome, 2019, 7(1):33.
doi: 10.1186/s40168-019-0647-0 URL |
[36] |
Hoffmann KH, Rodriguez-Brito B, Breitbart M, et al. Power law rank-abundance models for marine phage communities[J]. FEMS Microbiol Lett, 2007, 273(2):224-228.
pmid: 17559407 |
[37] |
Weitz JS, Poisot T, Meyer JR, et al. Phage-bacteria infection networks[J]. Trends Microbiol, 2013, 21(2):82-91.
doi: 10.1016/j.tim.2012.11.003 URL |
[38] |
Sasaki R, Miyashita S, Ando S, et al. Complete genomic sequence of a novel phytopathogenic Burkholderia phage isolated from fallen leaf compost[J]. Arch Virol, 2021, 166(1):313-316.
doi: 10.1007/s00705-020-04811-3 pmid: 33125584 |
[39] |
Sasaki R, Miyashita S, Ando S, et al. Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases[J]. Viruses, 2021, 13(4):591.
doi: 10.3390/v13040591 URL |
[40] | Rahmat Ullah S, Andleeb S, Raza T, et al. Effectiveness of a lytic phage SRG1 against vancomycin-resistant Enterococcus faecalis in compost and soil[J]. Biomed Res Int, 2017, 2017:9351017. |
[41] |
Wang K, Mao HL, Wang Z, et al. Succession of organics metabolic function of bacterial community in swine manure composting[J]. J Hazard Mater, 2018, 360:471-480.
doi: S0304-3894(18)30710-6 pmid: 30144766 |
[42] |
Wang K, Chu C, Li XK, et al. Succession of bacterial community function in cow manure composing[J]. Bioresour Technol, 2018, 267:63-70.
doi: 10.1016/j.biortech.2018.06.028 URL |
[43] |
Chen XM, Liu R, Hao JK, et al. Protein and carbohydrate drive microbial responses in diverse ways during different animal manures composting[J]. Bioresour Technol, 2019, 271:482-486.
doi: 10.1016/j.biortech.2018.09.096 URL |
[44] |
Hussein M, Pillai VV, Goddard JM, et al. Sustainable production of housefly(Musca domestica)larvae as a protein-rich feed ingredient by utilizing cattle manure[J]. PLoS One, 2017, 12(2):e0171708.
doi: 10.1371/journal.pone.0171708 URL |
[45] | Wilder SM, le Couteur DG, Simpson SJ. Diet mediates the relationship between longevity and reproduction in mammals[J]. Age(Dordr), 2013, 35(3):921-927. |
[46] |
Carmody RN, Gerber GK, Luevano JM Jr, et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe, 2015, 17(1):72-84.
doi: 10.1016/j.chom.2014.11.010 pmid: 25532804 |
[47] |
Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes[J]. Science, 2008, 320(5883):1647-1651.
doi: 10.1126/science.1155725 URL |
[48] |
Wan JX, Wang XF, Yang TJ, et al. Livestock manure type affects microbial community composition and assembly during composting[J]. Front Microbiol, 2021, 12:621126.
doi: 10.3389/fmicb.2021.621126 URL |
[49] |
Awasthi SK, Wong JWC, Li J, et al. Evaluation of microbial dynamics during post-consumption food waste composting[J]. Bioresour Technol, 2018, 251:181-188.
doi: 10.1016/j.biortech.2017.12.040 URL |
[50] |
Barrena R, Vázquez F, Sánchez A. Dehydrogenase activity as a method for monitoring the composting process[J]. Bioresour Technol, 2008, 99(4):905-908.
doi: 10.1016/j.biortech.2007.01.027 URL |
[51] |
Castaldi P, Garau G, Melis P. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions[J]. Waste Manag, 2008, 28(3):534-540.
doi: 10.1016/j.wasman.2007.02.002 URL |
[52] |
Qiao CC, Ryan Penton C, Liu C, et al. Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession[J]. Bioresour Technol, 2019, 288:121576.
doi: 10.1016/j.biortech.2019.121576 URL |
[53] |
George SP, Ahmad A, Rao MB. Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete[J]. Bioresour Technol, 2001, 77(2):171-175.
doi: 10.1016/S0960-8524(00)00150-4 URL |
[54] |
Thygesen A, Thomsen AB, Schmidt AS, et al. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw[J]. Enzyme Microb Technol, 2003, 32(5):606-615.
doi: 10.1016/S0141-0229(03)00018-8 URL |
[55] |
Saoudi B, Habbeche A, Kerouaz B, et al. Purification and characterization of a new thermoalkaliphilic pectate lyase from Acti-nomadura keratinilytica Cpt20[J]. Process Biochem, 2015, 50(12):2259-2266.
doi: 10.1016/j.procbio.2015.10.006 URL |
[56] |
Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol, 2013, 31(9):814-821.
doi: 10.1038/nbt.2676 pmid: 23975157 |
[57] |
Nguyen NH, Song ZW, Bates ST, et al. FUNGuild:an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecol, 2016, 20:241-248.
doi: 10.1016/j.funeco.2015.06.006 URL |
[58] |
Toju H, Kishida O, Katayama N, et al. Networks depicting the fine-scale co-occurrences of fungi in soil horizons[J]. PLoS One, 2016, 11(11):e0165987.
doi: 10.1371/journal.pone.0165987 URL |
[59] |
Glymenaki M, Barnes A, O’Hagan S, et al. Stability in metabolic phenotypes and inferred metagenome profiles before the onset of colitis-induced inflammation[J]. Sci Rep, 2017, 7(1):8836.
doi: 10.1038/s41598-017-08732-1 pmid: 28821731 |
[60] | Kang C, Wang B, Kaliannan K, et al. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet[J]. mBio, 2017, 8(3):e00470-e00417. |
[61] |
Ding JL, Wei D, An ZZ, et al. Succession of the bacterial community structure and functional prediction in two composting systems viewed through metatranscriptomics[J]. Bioresour Technol, 2020, 313:123688
doi: 10.1016/j.biortech.2020.123688 URL |
[62] |
Yano F, Nakajima T, Matsuda M. Reduction of nitrogen and phosphorus from livestock waste:a major priority for intensive animal production - review[J]. Asian Australas J Anim Sci, 1999, 12(4):651-656.
doi: 10.5713/ajas.1999.651 URL |
[63] |
Pan I, Dam B, Sen SK. Composting of common organic wastes using microbial inoculants[J]. 3 Biotech, 2012, 2(2):127-134.
doi: 10.1007/s13205-011-0033-5 URL |
[64] | 李庆康. 畜禽粪便的无害化处理及肥料化利用[J]. 农村实用工程技术, 2001, 21(11):24-25. |
Li QK. The harmless treatment and fertilizer manure[J]. Appl Eng Technol in Rural Area, 2001, 21(11):24-25. | |
[65] |
Gajalakshmi S, Abbasi SA. Solid waste management by composting:state of the art[J]. Crit Rev Environ Sci Technol, 2008, 38(5):311-400.
doi: 10.1080/10643380701413633 URL |
[66] |
Fan YT, Li CL, Lay JJ, et al. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost[J]. Bioresour Technol, 2004, 91(2):189-193.
doi: 10.1016/S0960-8524(03)00175-5 URL |
[67] |
Huang GF, Wong JWC, Wu QT, et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Manag, 2004, 24(8):805-813.
doi: 10.1016/j.wasman.2004.03.011 URL |
[68] | Naidu Y, Meon S, Kadir J, et al. Microbial starter for the enhancement of biological activity of compost tea[J]. Int J Agric Biol, 2010, 12(1):51-56. |
[69] | 王若斐, 薛超, 刘超, 等. 起爆剂促进猪粪堆肥腐熟研究[J]. 土壤, 2017, 49(6):1092-1099. |
Wang RF, Xue C, Liu C, et al. Effects of microbial inoculants on pig manure composting[J]. Soils, 2017, 49(6):1092-1099. | |
[70] |
Jiang GF, Chen PJ, Bao YZ, et al. Isolation of a novel psychrotrophic fungus for efficient low-temperature composting[J]. Bioresour Technol, 2021, 331:125049.
doi: 10.1016/j.biortech.2021.125049 URL |
[71] |
López-González JA, Suárez-Estrella F, Vargas-García MC, et al. Dynamics of bacterial microbiota during lignocellulosic waste composting:studies upon its structure, functionality and biodiversity[J]. Bioresour Technol, 2015, 175:406-416.
doi: 10.1016/j.biortech.2014.10.123 URL |
[72] |
Hannig C, Hannig M, Rehmer O, et al. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ[J]. Arch Oral Biol, 2007, 52(11):1048-1056.
pmid: 17603998 |
[73] |
Cherif H, Ouzari H, Marzorati M, et al. Bacterial community diversity assessment in municipal solid waste compost amended soil using DGGE and ARISA fingerprinting methods[J]. World J Microbiol Biotechnol, 2008, 24(7):1159-1167.
doi: 10.1007/s11274-007-9588-z URL |
[74] |
Tkachuk VL, Krause DO, Knox NC, et al. Targeted 16S rRNA high-throughput sequencing to characterize microbial communities during composting of livestock mortalities[J]. J Appl Microbiol, 2014, 116(5):1181-1194.
doi: 10.1111/jam.12449 pmid: 24447803 |
[75] |
Antunes LP, Martins LF, Pereira RV, et al. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics[J]. Sci Rep, 2016, 6:38915.
doi: 10.1038/srep38915 URL |
[76] |
Xie SX, Syrenne R, Sun S, et al. Exploration of Natural Biomass Utilization Systems(NBUS)for advanced biofuel—from systems biology to synthetic design[J]. Curr Opin Biotechnol, 2014, 27:195-203.
doi: 10.1016/j.copbio.2014.02.007 URL |
[1] | 丁晓艳, 王越, 王宁, 李婉婷, 丁国春, 李季. 外接堆肥微生物在餐厨废弃物好氧堆肥中的应用[J]. 生物技术通报, 2022, 38(5): 47-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||