生物技术通报 ›› 2022, Vol. 38 ›› Issue (5): 4-12.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0136
• 堆肥微生物专题(专题主编: 王禄山 教授) • 上一篇 下一篇
王宁1,2(), 李蕙秀3, 李季1,2, 丁国春1,2()
收稿日期:
2022-01-28
出版日期:
2022-05-26
发布日期:
2022-06-10
作者简介:
王宁,男,博士,研究方向:微生物生态;E-mail: 基金资助:
WANG Ning1,2(), LI Hui-xiu3, LI Ji1,2, DING Guo-chun1,2()
Received:
2022-01-28
Published:
2022-05-26
Online:
2022-06-10
摘要:
我国有机废弃物总量大、养分储量高,是提高农田生态系统服务功能的重要资源。好氧发酵能够较容易地实现有机废弃物处理与资源化转化,发酵产物堆肥常对多种植物病害具有抑制作用。回顾了近年来堆肥抑病方面的研究进展,重点关注堆肥对根际微生物组结构和功能的调控作用及潜在调控途径,探讨了堆肥微生物组与土壤和根际微生物组的差异,堆肥对土壤物理生物化学特性的影响及生物非生物环境因子对根际微生物组的影响,旨为“堆肥-土壤-植物根际微生物组”互作系统提供初步认识。
王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12.
WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases[J]. Biotechnology Bulletin, 2022, 38(5): 4-12.
[1] | FAO. Global agriculture towards 2050[C/OL]// High-level Expert Forum on How to Feed the World in 2050, Rome, October 12-13, 2009. [2022-03-30]. |
[2] |
Singh BK, Trivedi P. Microbiome and the future for food and nutrient security[J]. Microb Biotechnol, 2017, 10(1):50-53.
doi: 10.1111/1751-7915.12592 URL |
[3] |
Niu LL, Yang FX, Xu C, et al. Status of metal accumulation in farmland soils across China:from distribution to risk assessment[J]. Environ Pollut, 2013, 176:55-62.
doi: 10.1016/j.envpol.2013.01.019 URL |
[4] |
Kong XB. China must protect high-quality arable land[J]. Nature, 2014, 506(7486):7.
doi: 10.1038/506007a URL |
[5] | 王燕, 王晓莉, 王源超. 作物疫病菌致病机制研究进展与面临的挑战[J]. 中国科学基金, 2020, 34(4):393-400. |
Wang Y, Wang XL, Wang YC. Sustainable control of Phytophthora diseases:progress and challenge[J]. Bull Natl Nat Sci Found China, 2020, 34(4):393-400. | |
[6] |
Koenning SR, Wrather JA. Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009[J]. Plant Heal Prog, 2010, 11(1). DOI: 10.1094/PHP-2010-1122-01-RS.
doi: 10.1094/PHP-2010-1122-01-RS |
[7] |
Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012, 484(7393):186-194.
doi: 10.1038/nature10947 URL |
[8] |
Lamour KH, Stam R, Jupe J, et al. The oomycete broad-host-range pathogen Phytophthora capsici[J]. Mol Plant Pathol, 2012, 13(4):329-337.
doi: 10.1111/j.1364-3703.2011.00754.x pmid: 22013895 |
[9] | 郭艾云, 鲍艳宇, 周启星. 土壤农药污染与细菌农药-抗生素交叉抗性研究进展[J]. 微生物学通报, 2020, 47(9):2984-2995. |
Guo AY, Bao YY, Zhou QX. Advances in soil pesticide contamination and bacterial pesticide-antibiotic cross-resistance[J]. Microbiol China, 2020, 47(9):2984-2995. | |
[10] | 孙肖瑜, 王静, 金永堂. 我国水环境农药污染现状及健康影响研究进展[J]. 环境与健康杂志, 2009, 26(7):649-652. |
Sun XY, Wang J, Jin YT. Advances in research on pesticide pollution to the aquatic environment and health impact in China[J]. J Environ Heal, 2009, 26(7):649-652. | |
[11] | 牛新胜, 巨晓棠. 我国有机肥料资源及利用[J]. 植物营养与肥料学报, 2017, 23(6):1462-1479. |
Niu XS, Ju XT. Organic fertilizer resources and utilization in China[J]. J Plant Nutr Fertil, 2017, 23(6):1462-1479. | |
[12] | 李龙涛, 李万明, 孙继民, 等. 城乡有机废弃物资源化利用现状及展望[J]. 农业资源与环境学报, 2019, 36(3):264-271. |
Li LT, Li WM, Sun JM, et al. Research status and prospects of the resource utilization of organic waste in urban and rural areas[J]. J Agric Resour Environ, 2019, 36(3):264-271. | |
[13] | 沈思军, 潘晓亮, 侯如梁, 等. 有机肥生产过程中养分损失的研究[J]. 黑龙江畜牧兽医, 2014(14):54. |
Shen SJ, Pan XL, Hou RL, et al. Research on nutrient ooss during organic fertilizer production[J]. Heilongjiang Animal Sci Vet Med, 2014(14):54. | |
[14] |
Lumsden RD. Effect of composted sewage sludge on several soilborne pathogens and diseases[J]. Phytopathology, 1983, 73(11):1543.
doi: 10.1094/Phyto-73-1543 URL |
[15] |
Mehta CM, Palni U, Franke-Whittle IH, et al. Compost:its role, mechanism and impact on reducing soil-borne plant diseases[J]. Waste Manag, 2014, 34(3):607-622.
doi: 10.1016/j.wasman.2013.11.012 URL |
[16] |
Zhen Z, Liu HT, Wang N, et al. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China[J]. PLoS One, 2014, 9(10):e108555.
doi: 10.1371/journal.pone.0108555 URL |
[17] |
Mehta CM, Palni U, Franke-Whittle IH, et al. Compost:its role, mechanism and impact on reducing soil-borne plant diseases[J]. Waste Manag, 2014, 34(3):607-622.
doi: 10.1016/j.wasman.2013.11.012 URL |
[18] |
Siddiqui Y, Meon S, Ismail MR, et al. Trichoderma-fortified compost extracts for the control of Choanephora wet rot in okra production[J]. Crop Prot, 2008, 27(3/4/5):385-390.
doi: 10.1016/j.cropro.2007.07.002 URL |
[19] |
Gea FJ, Navarro MJ, Tello JC. Potential application of compost teas of agricultural wastes in the control of the mushroom pathogen Verticillium Fungicola[J]. J Plant Dis Prot, 2009, 116(6):271-273.
doi: 10.1007/BF03356322 URL |
[20] | Antoniou C, Chatzimichail G, Xenofontos R, et al. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism[J]. J Pineal Res, 2017, 62(4):2017 May; 62(4). |
[21] |
Krause MS, Tiquia SM, et al. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish[J]. Phytopathology, 2003, 93(10):1292-1300.
doi: 10.1094/PHYTO.2003.93.10.1292 pmid: 18944329 |
[22] |
Yogev A, Raviv M, Hadar Y, et al. Induced resistance as a putative component of compost suppressiveness[J]. Biol Control, 2010, 54(1):46-51.
doi: 10.1016/j.biocontrol.2010.03.004 URL |
[23] |
Zhang W, Han DY, Dick WA, et al. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis[J]. Phytopathology®, 1998, 88(5):450-455.
doi: 10.1094/PHYTO.1998.88.5.450 URL |
[24] |
Hadar Y, Papadopoulou KK. Suppressive composts:microbial ecology links between abiotic environments and healthy plants[J]. Annu Rev Phytopathol, 2012, 50:133-153.
doi: 10.1146/annurev-phyto-081211-172914 URL |
[25] | Stan V, Virsta A, Dusa EM, et al. Waste recycling and compost benefits[J]. Not Bot Horti Agrobot Cluj Napoca, 2009, 37(2):9. |
[26] |
Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environ Microbiol, 2007, 9(4):1084-1090.
pmid: 17359279 |
[27] |
Leelasuphakul W, Sivanunsakul P, Phongpaichit S. Purification, characterization and synergistic activity of β-1, 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight[J]. Enzyme Microb Technol, 2006, 38(7):990-997.
doi: 10.1016/j.enzmictec.2005.08.030 URL |
[28] | 林英, 王纪章, 赵青松, 等. 堆肥对植物土传病害抑制作用研究进展[J]. 江苏农业科学, 2014, 42(12):168-171. |
Lin Y, Wang JZ, Zhao QS, et al. Research progress on the inhibitory effect of compost on plant soil-borne diseases[J]. Jiangsu Agric Sci, 2014, 42(12):168-171. | |
[29] |
Noble R, Coventry E. Suppression of soil-borne plant diseases with composts:a review[J]. Biocontrol Sci Technol, 2005, 15(1):3-20.
doi: 10.1080/09583150400015904 URL |
[30] | St Martin CCG, Ramsubhag A. Potential of compost for suppressing plant diseases[M]// Sustainable crop disease management using natural products. Wallingford:CABI, 2015:345-388. |
[31] |
Bernard E, Larkin RP, Tavantzis S, et al. Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems[J]. Plant Soil, 2014, 374(1/2):611-627.
doi: 10.1007/s11104-013-1909-4 URL |
[32] |
Larkin RP, Honeycutt CW, Griffin TS, et al. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities[J]. Phytopathology, 2011, 101(1):58-67.
doi: 10.1094/PHYTO-04-10-0100 URL |
[33] | 高淋淋, 黄金玲, 陆秀红, 等. 堆肥防治植物病害研究进展[J]. 安徽农业科学, 2014, 42(31):10933-10935. |
Gao LL, Huang JL, Lu XH, et al. Research progress on compost to prevent and control plant diseases[J]. J Anhui Agric Sci, 2014, 42(31):10933-10935. | |
[34] |
Bahramisharif A, Rose LE. Efficacy of biological agents and compost on growth and resistance of tomatoes to late blight[J]. Planta, 2019, 249(3):799-813.
doi: 10.1007/s00425-018-3035-2 pmid: 30406411 |
[35] |
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[36] |
García-Delgado C, Barba-Vicente V, Marín-Benito JM, et al. Influence of different agricultural management practices on soil microbial community over dissipation time of two herbicides[J]. Sci Total Environ, 2019, 646:1478-1488.
doi: 10.1016/j.scitotenv.2018.07.395 URL |
[37] |
Schreiter S, Ding GC, Grosch R, et al. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce[J]. FEMS Microbiol Ecol, 2014, 90(3):718-730.
doi: 10.1111/1574-6941.12430 pmid: 25244497 |
[38] | 刘占良, 翟红, 刘大群. 植物根际的微生物互作及其在植物病害生物防治中的应用[J]. 河北农业大学学报, 2003, 26(S1):183-186, 190. |
Liu ZL, Zhai H, Liu DQ. Microbial interaction in the rhizosphere and its involvement in biological control of plant diseases[J]. J Agric Univ Hebei, 2003, 26(S1):183-186, 190. | |
[39] |
Terrazas RA, Giles C, Paterson E, et al. Plant-microbiota interactions as a driver of the mineral turnover in the rhizosphere[J]. Adv Appl Microbiol, 2016, 95:1-67.
doi: 10.1016/bs.aambs.2016.03.001 pmid: 27261781 |
[40] | 孙昭安, 朱彪, 张译文, 等. 小麦和玉米生长对土壤碳输入和输出的贡献[J]. 农业环境科学学报, 2021, 40(10):2257-2265. |
Sun ZA, Zhu B, Zhang YW, et al. Contributions of wheat and maize growth to soil carbon input and output[J]. J Agro Environ Sci, 2021, 40(10):2257-2265. | |
[41] |
de Oliveira Vargas T, Concilio A, Woyann LG, et al. Rhizosphere priming effect on N mineralization in vegetable and grain crop systems[J]. Plant Soil, 2020, 452(1/2):281-293.
doi: 10.1007/s11104-020-04566-5 URL |
[42] |
Bakker PAHM, Pieterse CMJ, de Jonge R, et al. The soil-borne legacy[J]. Cell, 2018, 172(6):1178-1180.
doi: S0092-8674(18)30168-5 pmid: 29522740 |
[43] |
Wang LY, Wang N, Mi DD, et al. Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum[J]. J Microbiol, 2017, 55(7):554-560.
doi: 10.1007/s12275-017-6589-y URL |
[44] |
Khabbaz SE, Zhang L, Cáceres LA, et al. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases[J]. Ann Appl Biol, 2015, 166(3):456-471.
doi: 10.1111/aab.12196 URL |
[45] |
Liang TW, Chen YY, Pan PS, et al. Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor[J]. Int J Biol Macromol, 2014, 63:8-14.
doi: 10.1016/j.ijbiomac.2013.10.027 URL |
[46] |
Ferreira CMH, Soares HMVM, Soares EV. Promising bacterial genera for agricultural practices:an insight on plant growth-promoting properties and microbial safety aspects[J]. Sci Total Environ, 2019, 682:779-799.
doi: 10.1016/j.scitotenv.2019.04.225 |
[47] |
Gómez Expósito R, de Bruijn I, Postma J, et al. Current insights into the role of rhizosphere bacteria in disease suppressive soils[J]. Front Microbiol, 2017, 8:2529.
doi: 10.3389/fmicb.2017.02529 pmid: 29326674 |
[48] |
Lee CH, Park SJ, Hwang HY, et al. Effects of food waste compost on the shift of microbial community in water saturated and unsaturated soil condition[J]. Appl Biol Chem, 2019, 62:36.
doi: 10.1186/s13765-019-0445-1 URL |
[49] | 蔡燕飞, 廖宗文, 章家恩, 等. 生态有机肥对番茄青枯病及土壤微生物多样性的影响[J]. 应用生态学报, 2003, 14(3):349-353. |
Cai YF, Liao ZW, Zhang Jia'en, et al. Effect of ecological organic fertilizer on tomato bacterial wilt and soil microbial diversities[J]. Chinese Journal of Applied Ecology, 2003, 14(3):349-353. | |
[50] | 施河丽, 孙立广, 谭军, 等. 生物有机肥对烟草青枯病的防效及对土壤细菌群落的影响[J]. 中国烟草科学, 2018, 39(2):54-62. |
Shi HL, Sun LG, Tan J, et al. Control efficiency of bio-organic fertilizers on tobacco bacterial wilt and their effects on soil bacterial community[J]. Chin Tob Sci, 2018, 39(2):54-62. | |
[51] |
胡英宏, 任泽广, 杨姝钰, 等. 生物有机肥对菠萝心腐病发生和土壤细菌群落结构的影响[J]. 应用与环境生物学报, 2021. DOI: 10.19675/j.cnki.1006-687x.2021.05029.
doi: 10.19675/j.cnki.1006-687x.2021.05029 |
Hu Yinghong, Ren Zeguang, Yang Shuyu, et al. Effects of bio-organic fertilizers on pineapple heart rot and bacterial community structure[J]. Chinese Journal of Applied and Environmental Biology, 2021. DOI: 10.19675/j.cnki.1006-687x.2021.05029.
doi: 10.19675/j.cnki.1006-687x.2021.05029 |
|
[52] |
Antoniou A, Tsolakidou MD, Stringlis IA, et al. Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato[J]. Front Plant Sci, 2017, 8:2022.
doi: 10.3389/fpls.2017.02022 URL |
[53] |
Zhao J, Liu J, Liang H, et al. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health[J]. PLoS One, 2018, 13(2):e0192967.
doi: 10.1371/journal.pone.0192967 URL |
[54] | Han H, Bai MH, Chen YT, et al. Dynamics of diversity and abundance of sulfonamide resistant bacteria in a silt loam soil fertilized by compost[J]. Antibiotics(Basel), 2021, 10(6):699. |
[55] |
Shen ZZ, Wang DS, Ruan YZ, et al. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application[J]. PLoS One, 2014, 9(5):e98420.
doi: 10.1371/journal.pone.0098420 URL |
[56] |
Wang Y, Gong JY, Li JX, et al. Insights into bacterial diversity in compost:core microbiome and prevalence of potential pathogenic bacteria[J]. Sci Total Environ, 2020, 718:137304.
doi: 10.1016/j.scitotenv.2020.137304 URL |
[57] |
Meng QX, Yang W, Men MQ, et al. Microbial community succession and response to environmental variables during cow manure and corn straw composting[J]. Front Microbiol, 2019, 10:529.
doi: 10.3389/fmicb.2019.00529 URL |
[58] | 王小慧, 张国漪, 李蕊, 等. 拮抗菌强化的生物有机肥对西瓜枯萎病的防治作用[J]. 植物营养与肥料学报, 2013, 19(1):223-231. |
Wang XH, Zhang GY, Li R, et al. Control of watermelon Fusarium wilt by using antagonist-enhanced biological organic fertilizers[J]. Plant Nutr Fertil Sci, 2013, 19(1):223-231. | |
[59] | 刘爱荣, 陈双臣, 陈凯, 等. 哈茨木霉对黄瓜尖孢镰刀菌的抑制作用和抗性相关基因表达[J]. 植物保护学报, 2010, 37(3):249-254. |
Liu AR, Chen SC, Chen K, et al. Antagonism effect of Trichoderma harzianum against Fusarium oxysporum on cucumber and related genes expression analysis[J]. J Plant Prot, 2010, 37(3):249-254. | |
[60] | 孙茜茜, 李春强, 易小平. 几种生防细菌对尖孢镰刀菌的抑菌效果及其相互间包容性生长的快速检测[J]. 热带农业科学, 2019, 39(12):36-41. |
Sun QQ, Li CQ, Yi XP. Inhibitory effect of some biocontrol bacteria on Fusarium oxysporum and rapid detection of the biocontrol bacteria for their inclusive growth[J]. Chin J Trop Agric, 2019, 39(12):36-41. | |
[61] |
Chen Y, Xu YP, Zhou T, et al. Biocontrol of Fusarium wilt disease in strawberries using bioorganic fertilizer fortified with Bacillus licheniformis X-1 and Bacillus methylotrophicus Z-1[J]. 3 Biotech, 2020, 10(2):80.
doi: 10.1007/s13205-020-2060-6 pmid: 32099731 |
[62] | 朱菲莹, 张屹, 肖姬玲, 等. 生物有机肥对土壤微生物群落结构变化及西瓜枯萎病的调控[J]. 微生物学报, 2019, 59(12):2323-2333. |
Zhu FY, Zhang Y, Xiao JL, et al. Regulation of soil microbial community structures and watermelon Fusarium wilt by using bio-organic fertilizer[J]. Acta Microbiol Sin, 2019, 59(12):2323-2333. | |
[63] |
Shen ZZ, Ruan YZ, Chao X, et al. Rhizosphere microbial community manipulated by 2years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression[J]. Biol Fertil Soils, 2015, 51(5):553-562.
doi: 10.1007/s00374-015-1002-7 URL |
[64] |
Huang JF, Pang YW, Zhang FB, et al. Suppression of Fusarium wilt of banana by combining acid soil ameliorant with biofertilizer made from Bacillus velezensis H-6[J]. Eur J Plant Pathol, 2019, 154(3):585-596.
doi: 10.1007/s10658-019-01683-5 URL |
[65] |
Li M, Pommier T, Yin Y, et al. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition[J]. ISME J, 2022, 16(3):868-875.
doi: 10.1038/s41396-021-01126-2 URL |
[66] |
Trivedi P, Leach JE, Tringe SG, et al. Plant-microbiome interactions:from community assembly to plant health[J]. Nat Rev Microbiol, 2020, 18(11):607-621.
doi: 10.1038/s41579-020-0412-1 URL |
[67] | 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学, 2021, 51(1):1-11. |
Zhu YG, Peng JJ, Wei Z, et al. Linking the soil microbiome to soil health[J]. Sci Sin Vitae, 2021, 51(1):1-11. | |
[68] | 张青青, 徐冰, 李跃忠, 等. 湿垃圾好氧堆肥产品施用方式对土壤理化性状的影响[J]. 园林, 2020(7):74-79. |
Zhang QQ, Xu B, Li YZ, et al. Effect of application method of compost products of food waste on soil physicochemical properties[J]. Landsc Archit, 2020(7):74-79. | |
[69] | 杨合法, 范聚芳, 戈志奇, 等. 有机、无公害及常规生产模式番茄病害及防治效果比较研究[J]. 中国生态农业学报, 2009, 17(5):933-937. |
Yang HF, Fan JF, Ge ZQ, et al. Main diseases and control effects of organic, integrated and conventional cultivation patterns of greenhouse tomato[J]. Chin J Eco Agric, 2009, 17(5):933-937.
doi: 10.3724/SP.J.1011.2009.00933 URL |
|
[70] | Ding GC, Bai MH, Han H, et al. Microbial taxonomic, nitrogen cycling and phosphorus recycling community composition during long-term organic greenhouse farming[J]. FEMS Microbiol Ecol, 2019, 95(5):fiz042. |
[71] |
Han H, Teng YM, Yang HF, et al. Effects of long-term use of compost on N2O and CO2 fluxes in greenhouse vegetable systems[J]. Compost Sci Util, 2017, 25(sup1):S61-S69.
doi: 10.1080/1065657X.2016.1238786 URL |
[72] |
Han H, Ding GC, Li XX, et al. Organic vegetable cultivation reduces N leaching while increasing the relative soil N budget[J]. Agric Water Manag, 2019, 223:105607.
doi: 10.1016/j.agwat.2019.04.024 URL |
[73] | Li HX, Ding XY, Chen C, et al. Enrichment of phosphate solubilizing bacteria during late developmental stages of eggplant(Solanum melongena L.)[J]. FEMS Microbiol Ecol, 2019, 95(3):fiz023. |
[74] |
Li HX, Cai XX, Gong JY, et al. Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against pepper blight(Phytophthora capsici)[J]. Front Microbiol, 2019, 10:342.
doi: 10.3389/fmicb.2019.00342 URL |
[75] |
Wei Z, Gu YA, Friman VP, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Sci Adv, 2019, 5(9):eaaw0759.
doi: 10.1126/sciadv.aaw0759 URL |
[76] |
Hartmann M, Frey B, Mayer J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. ISME J, 2015, 9(5):1177-1194.
doi: 10.1038/ismej.2014.210 pmid: 25350160 |
[77] |
Xin YY, RAHMAN A, Li HX, et al. Modification of total and phosphorus mineralizing bacterial communities associated with Zea mays L. through plant development and fertilization regimes[J]. J Integr Agric, 2021, 20(11):3026-3038.
doi: 10.1016/S2095-3119(20)63413-X URL |
[78] |
Chen QL, Ding J, Zhu D, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils[J]. Soil Biol Biochem, 2020, 141:107686.
doi: 10.1016/j.soilbio.2019.107686 URL |
[79] |
Houlden A, Timms-Wilson TM, Day MJ, et al. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops[J]. FEMS Microbiol Ecol, 2008, 65(2):193-201.
doi: 10.1111/j.1574-6941.2008.00535.x pmid: 18616582 |
[80] |
Marques JM, da Silva TF, Vollu RE, et al. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants[J]. FEMS Microbiol Ecol, 2014, 88(2):424-435.
doi: 10.1111/1574-6941.12313 pmid: 24597529 |
[81] |
Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development[J]. ISME J, 2014, 8(4):790-803.
doi: 10.1038/ismej.2013.196 URL |
[82] |
Wu M, Han H, Zheng XN, et al. Dynamics of oxytetracycline and resistance genes in soil under long-term intensive compost fertilization in Northern China[J]. Environ Sci Pollut Res Int, 2019, 26(21):21381-21393.
doi: 10.1007/s11356-019-05173-3 URL |
[83] |
Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012, 488(7409):91-95.
doi: 10.1038/nature11336 URL |
[84] |
Lundberg DS, Lebeis SL, Paredes SH, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7409):86-90.
doi: 10.1038/nature11237 URL |
[85] | Zarraonaindia I, Owens SM, Weisenhorn P, et al. The soil microbiome influences grapevine-associated microbiota[J]. mBio, 2015, 6(2):e02527-e02514. |
[86] |
Peiffer JA, Spor A, Koren O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proc Natl Acad Sci USA, 2013, 110(16):6548-6553.
doi: 10.1073/pnas.1302837110 URL |
[1] | 王孝芳, 万金鑫, 韦中, 徐阳春, 沈其荣. 畜禽粪便堆肥过程中微生物群落演替[J]. 生物技术通报, 2022, 38(5): 13-21. |
[2] | 王宇蕴, 赵兵, 马丽婷, 李兰, 邓亚琴, 徐智. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5): 22-28. |
[3] | 解新宇, 史明子, 齐海石, 吴迪, 张旭, 张椿浩, 吴占海, 魏自民. 堆肥腐殖化:非生物学与生物学调控机制概述[J]. 生物技术通报, 2022, 38(5): 29-35. |
[4] | 丁晓艳, 王越, 王宁, 李婉婷, 丁国春, 李季. 外接堆肥微生物在餐厨废弃物好氧堆肥中的应用[J]. 生物技术通报, 2022, 38(5): 47-55. |
[5] | 赵旭, 王文丽, 李娟. 腐殖酸煤对牛粪好氧堆肥臭气释放量及微生物群落多样性的影响[J]. 生物技术通报, 2021, 37(12): 104-112. |
[6] | 杨天杰, 张令昕, 顾少华, 潘子豪, 江高飞, 王世梅, 韦中, 徐阳春, 沈其荣. 好氧堆肥高温期灭活病原菌的效果和影响因素研究[J]. 生物技术通报, 2021, 37(11): 237-247. |
[7] | 王卫雄, 沈博, 贾洪柏, 乔俊卿, 牛犇. 根际生防菌群的应用及其防病增效的潜在机制[J]. 生物技术通报, 2020, 36(9): 31-41. |
[8] | 张芮瑞, 邱树毅, 周少奇, 王雪郦. 丢糟和磷矿粉高温堆肥中耐高温解磷菌的筛选及性能分析[J]. 生物技术通报, 2020, 36(5): 110-119. |
[9] | 汪盼盼, 杨野, 刘迪秋, 崔秀明, 刘源. 宏基因组学在植物病害研究中的应用[J]. 生物技术通报, 2020, 36(12): 146-154. |
[10] | 李林超, 张超, 董庆, 郭成, 周波, 高峥. 堆肥过程中纤维素降解菌的分离与鉴定[J]. 生物技术通报, 2019, 35(9): 165-171. |
[11] | 王芳, 李振轮, 陈艳丽, 杨水英, 徐义. 钙抑制植物病害作用及机制的研究进展[J]. 生物技术通报, 2017, 33(2): 1-7. |
[12] | 马丹丹,邓雨青,周彦,周常勇,李中安. 电镜技术在植物病害研究中的应用[J]. 生物技术通报, 2016, 32(3): 38-43. |
[13] | 赵恺凝, 赵国柱, 国辉, 王晓旭, 朱胜男, 徐锐. 园林废弃物堆肥化技术中微生物菌剂的功能与作用[J]. 生物技术通报, 2016, 32(1): 41-48. |
[14] | 王艺凯;李宝聚;陈红漫;石延霞;阚国仕;刘洋;. 植物病害免疫学诊断技术[J]. , 2008, 0(04): 75-77. |
[15] | 林代炎;杨菁;叶美锋;林琰;. 城市生活垃圾堆肥发酵中微生物菌群变化规律的研究[J]. , 2006, 0(S1): 387-390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||