生物技术通报 ›› 2022, Vol. 38 ›› Issue (5): 22-28.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0134
• 堆肥微生物专题(专题主编: 王禄山 教授) • 上一篇 下一篇
收稿日期:
2022-01-28
出版日期:
2022-05-26
发布日期:
2022-06-10
作者简介:
王宇蕴,女,博士,研究方向:固体废弃物资源化利用与养分循环;E-mail: 基金资助:
WANG Yu-yun, ZHAO Bing, MA Li-ting, LI Lan, DENG Ya-qin, XU Zhi()
Received:
2022-01-28
Published:
2022-05-26
Online:
2022-06-10
摘要:
好氧堆肥是一种典型的有机固体废弃物稳定化无害化的生物化学过程,在这一过程中有机物通过微生物分解然后聚合形成腐殖质(HS)。木质素由于其复杂的网络结构,导致很难在堆肥高温阶段完全被微生物降解,此外,木质素作为HS形成的原料和骨架,它的深度降解对堆肥腐殖化过程具有重要的意义。堆肥冷却和腐熟阶段是HS形成的关键时期,其中真菌和木质素酶在深化木质素降解、强化腐殖化过程中扮演重要角色。温度和pH作为影响腐殖化进程的重要环境因子,它的调控是人为强化腐殖化进程的重要手段。综述了关键酶降解木质素的作用机制、前体物质与腐殖酸形成之间的作用机理,以及真菌对腐殖酸形成的驱动机制。提出探索堆肥过程中参与HS合成代谢途径的关键基因和酶是今后堆肥腐殖化过程研究的重要方向。
王宇蕴, 赵兵, 马丽婷, 李兰, 邓亚琴, 徐智. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5): 22-28.
WANG Yu-yun, ZHAO Bing, MA Li-ting, LI Lan, DENG Ya-qin, XU Zhi. Humification Process and Microbial Driving Mechanism of Composting[J]. Biotechnology Bulletin, 2022, 38(5): 22-28.
[1] | 任利枢. 我国农业废弃物处理现状[J]. 畜牧兽医科技信息, 2019(8):35. |
Ren LS. Current status of agricultural waste treatment in China[J]. Chin J Animal Husb Vet Med, 2019(8):35. | |
[2] |
Sarsaiya S, Jain A, Kumar Awasthi S, et al. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives[J]. Bioresour Technol, 2019, 291:121905.
doi: 10.1016/j.biortech.2019.121905 URL |
[3] | 田宜水, 单明, 孔庚, 等. 我国生物质经济发展战略研究[J]. 中国工程科学, 2021, 23(1):133-140. |
Tian YS, Shan M, Kong G, et al. Development strategy of biomass economy in China[J]. Strateg Study CAE, 2021, 23(1):133-140. | |
[4] | 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6):1168-1176. |
Wu HW, Sun XQ, Liang BW, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. J Agro Environ Sci, 2020, 39(6):1168-1176. | |
[5] |
Zhang SH, Chen ZQ, Wen QX, et al. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra:characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere, 2016, 155:358-366.
doi: 10.1016/j.chemosphere.2016.04.051 URL |
[6] |
Yan L, Li ZG, Wang GX, et al. Diversity of ammonia-oxidizing bacteria and Archaea in response to different aeration rates during cattle manure composting[J]. Ecol Eng, 2016, 93:46-54.
doi: 10.1016/j.ecoleng.2016.05.002 URL |
[7] |
Zhao JC, Sun XN, Awasthi MK, et al. Performance evaluation of gaseous emissions and Zn speciation during Zn-rich antibiotic manufacturing wastes and pig manure composting[J]. Bioresour Technol, 2018, 267:688-695.
doi: 10.1016/j.biortech.2018.07.088 URL |
[8] |
Zhu LJ, Zhao Y, Zhang WS, et al. Roles of bacterial community in the transformation of organic nitrogen toward enhanced bioavailability during composting with different wastes[J]. Bioresour Technol, 2019, 285:121326.
doi: 10.1016/j.biortech.2019.121326 URL |
[9] |
Chen XM, Liu R, Hao JK, et al. Protein and carbohydrate drive microbial responses in diverse ways during different animal manures composting[J]. Bioresour Technol, 2019, 271:482-486.
doi: 10.1016/j.biortech.2018.09.096 URL |
[10] |
Lu Q, Zhao Y, Gao XT, et al. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting[J]. Bioresour Technol, 2018, 256:128-136.
doi: 10.1016/j.biortech.2018.01.142 URL |
[11] |
Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review[J]. Bioresour Technol, 2000, 72(2):169-183.
doi: 10.1016/S0960-8524(99)00104-2 URL |
[12] |
Mehta CM, Palni U, Franke-Whittle IH, et al. Compost:its role, mechanism and impact on reducing soil-borne plant diseases[J]. Waste Manag, 2014, 34(3):607-622.
doi: 10.1016/j.wasman.2013.11.012 URL |
[13] |
Zhang L, Sun XY. Addition of fish pond sediment and rock phosphate enhances the composting of green waste[J]. Bioresour Technol, 2017, 233:116-126.
doi: 10.1016/j.biortech.2017.02.073 URL |
[14] |
Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass:effect of key parameters, technological improvements, and challenges[J]. Bioresour Technol, 2020, 300:122724.
doi: 10.1016/j.biortech.2019.122724 URL |
[15] |
Liu SJ. Woody biomass:niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis[J]. Biotechnol Adv, 2010, 28(5):563-582.
doi: 10.1016/j.biotechadv.2010.05.006 URL |
[16] |
Harindintwali JD, Zhou JL, Yu XB. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria:a novel tool for environmental sustainability[J]. Sci Total Environ, 2020, 715:136912.
doi: 10.1016/j.scitotenv.2020.136912 URL |
[17] |
Huang WY, Ngo HH, Lin C, et al. Aerobic co-composting degradation of highly PCDD/F-contaminated field soil. A study of bacterial community[J]. Sci Total Environ, 2019, 660:595-602.
doi: 10.1016/j.scitotenv.2018.12.312 URL |
[18] |
Xie XY, Gao XT, Pan CN, et al. Assessment of multiorigin humin components evolution and influencing factors during composting[J]. J Agric Food Chem, 2019, 67(15):4184-4192.
doi: 10.1021/acs.jafc.8b07007 URL |
[19] |
Wu JQ, Zhao Y, Zhao W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresour Technol, 2017, 226:191-199.
doi: 10.1016/j.biortech.2016.12.031 URL |
[20] |
Gao XT, Tan WB, Zhao Y, et al. Diversity in the mechanisms of humin formation during composting with different materials[J]. Environ Sci Technol, 2019, 53(7):3653-3662.
doi: 10.1021/acs.est.8b06401 URL |
[21] |
Chen Y, Wang YY, Xu Z, et al. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresour Technol, 2019, 293:122075.
doi: 10.1016/j.biortech.2019.122075 URL |
[22] |
Voběrková S, Vaverková MD, Burešová A, et al. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste[J]. Waste Manag, 2017, 61:157-164.
doi: 10.1016/j.wasman.2016.12.039 URL |
[23] |
Kuppuraj SP, Venkidasamy B, Selvaraj D, et al. Comprehensive in silico and gene expression profiles of MnP family genes in Phanerochaete chrysosporium towards lignin biodegradation[J]. Int Biodeterior Biodegrad, 2021, 157:105143.
doi: 10.1016/j.ibiod.2020.105143 URL |
[24] |
López-González JA, Vargas-García M, López MJ, et al. Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting[J]. Bioresour Technol, 2015, 187:305-313.
doi: 10.1016/j.biortech.2015.03.124 URL |
[25] |
Zhu N, Zhu YY, Kan ZX, et al. Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw[J]. Bioresour Technol, 2021, 341:125842.
doi: 10.1016/j.biortech.2021.125842 URL |
[26] |
Kulikowska D. Kinetics of organic matter removal and humification progress during sewage sludge composting[J]. Waste Manag, 2016, 49:196-203.
doi: 10.1016/j.wasman.2016.01.005 URL |
[27] |
Zhou Y, Selvam A, Wong JWC. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues[J]. Bioresour Technol, 2014, 168:229-234.
doi: 10.1016/j.biortech.2014.05.070 URL |
[28] |
Xu JQ, Jiang ZW, Li MQ, et al. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting[J]. J Environ Manage, 2019, 243:240-249.
doi: 10.1016/j.jenvman.2019.05.008 URL |
[29] |
Lee JG, Yoon HY, Cha JY, et al. Artificial humification of lignin architecture:top-down and bottom-up approaches[J]. Biotechnol Adv, 2019, 37(8):107416.
doi: 10.1016/j.biotechadv.2019.107416 URL |
[30] |
Niederer C, Schwarzenbach RP, Goss KU. Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals[J]. Environ Sci Technol, 2007, 41(19):6711-6717.
doi: 10.1021/es0709932 URL |
[31] |
Wang C, Tu QP, Dong D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. J Hazard Mater, 2014, 280:409-416.
doi: 10.1016/j.jhazmat.2014.08.030 URL |
[32] |
de Melo BAG, Motta FL, Santana MHA. Humic acids:structural properties and multiple functionalities for novel technological developments[J]. Mater Sci Eng C Mater Biol Appl, 2016, 62:967-974.
doi: 10.1016/j.msec.2015.12.001 URL |
[33] |
Zhang L, Sun XY. Evaluation of maifanite and silage as amendments for green waste composting[J]. Waste Manag, 2018, 77:435-446.
doi: 10.1016/j.wasman.2018.04.028 URL |
[34] |
Brandt A, Chen L, van Dongen BE, et al. Structural changes in lignins isolated using an acidic ionic liquid water mixture[J]. Green Chem, 2015, 17(11):5019-5034.
doi: 10.1039/C5GC01314C URL |
[35] |
Wu D, Wei ZM, Mohamed TA, et al. Lignocellulose biomass bioconversion during composting:mechanism of action of lignocellulase, pretreatment methods and future perspectives[J]. Chemosphere, 2022, 286(Pt 1):131635.
doi: 10.1016/j.chemosphere.2021.131635 URL |
[36] |
Abdellah YAY, Li TZ, Chen X, et al. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions[J]. Bioresour Technol, 2021, 320(Pt B):124402.
doi: 10.1016/j.biortech.2020.124402 URL |
[37] |
Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin:a review[J]. Biocatal Agric Biotechnol, 2020, 23:101498.
doi: 10.1016/j.bcab.2020.101498 URL |
[38] | Lobos S, Larraín J, Salas L, et al. Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora[J]. Microbiology(Reading), 1994, 140(Pt 10):2691-2698. |
[39] |
Wu D, Wei ZM, Gao XZ, et al. Reconstruction of core microbes based on producing lignocellulolytic enzymes causing by bacterial inoculation during rice straw composting[J]. Bioresour Technol, 2020, 315:123849.
doi: 10.1016/j.biortech.2020.123849 URL |
[40] |
Chefetz B, Kerem Z, Chen Y, et al. Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste[J]. Soil Biol Biochem, 1998, 30(8/9):1091-1098.
doi: 10.1016/S0038-0717(97)00199-5 URL |
[41] |
Zhang ZC, Zhao Y, Yang TX, et al. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting:Amino acids as the key linker to promote humification process[J]. Bioresour Technol, 2019, 291:121882.
doi: 10.1016/j.biortech.2019.121882 URL |
[42] | Parsons JW. Humus chemistry—genesis, composition, reactions[J]. Soil Sci, 1983, 135(2):129-130. |
[43] |
Awasthi MK, Wang Q, Chen HY, et al. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting[J]. Bioresour Technol, 2018, 247:138-146.
doi: 10.1016/j.biortech.2017.09.061 URL |
[44] |
Shin SK, Ko YJ, Hyeon JE, et al. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes[J]. Bioresour Technol, 2019, 289:121728.
doi: 10.1016/j.biortech.2019.121728 URL |
[45] |
Wang XY, Sun B, Mao JD, et al. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions[J]. Environ Sci Technol, 2012, 46(13):7159-7165.
doi: 10.1021/es300522x URL |
[46] |
Wei YQ, Wei ZM, Cao ZY, et al. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting[J]. Bioresour Technol, 2016, 211:610-617.
doi: 10.1016/j.biortech.2016.03.141 URL |
[47] |
Huang GF, Wong JWC, Wu QT, et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Manag, 2004, 24(8):805-813.
doi: 10.1016/j.wasman.2004.03.011 URL |
[48] |
Cayuela ML, Sánchez-Monedero MA, Roig A. Evaluation of two different aeration systems for composting two-phase olive mill wastes[J]. Process Biochem, 2006, 41(3):616-623.
doi: 10.1016/j.procbio.2005.08.007 URL |
[49] |
Wang XQ, Cui HY, Shi JH, et al. Relationship between bacterial diversity and environmental parameters during composting of different raw materials[J]. Bioresour Technol, 2015, 198:395-402.
doi: 10.1016/j.biortech.2015.09.041 URL |
[50] | Wang SP, Zhong XZ, Wang TT, et al. Aerobic composting of distilled grain waste eluted from a Chinese spirit-making process:the effects of initial pH adjustment[J]. Bioresour Technol, 2017, 245(Pt A):778-785. |
[51] |
Zhang WM, Yu CX, Wang XJ, et al. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting[J]. Bioresour Technol, 2020, 297:122410.
doi: 10.1016/j.biortech.2019.122410 URL |
[52] |
Lei F, VanderGheynst JS. The effect of microbial inoculation and pH on microbial community structure changes during composting[J]. Process Biochem, 2000, 35(9):923-929.
doi: 10.1016/S0032-9592(99)00155-7 URL |
[53] |
Liu QZ, Liu J, Hong D, et al. Fungal laccase-triggered 17β-estradiol humification kinetics and mechanisms in the presence of humic precursors[J]. J Hazard Mater, 2021, 412:125197.
doi: 10.1016/j.jhazmat.2021.125197 URL |
[54] |
Nadeem A, Baig S, Iqbal K, et al. Impact of laccase enzyme inducers on solid waste compost maturity and stability[J]. Environ Technol, 2014, 35(21/22/23/24):3130-3138.
doi: 10.1080/09593330.2014.932439 URL |
[55] |
Arab G, Razaviarani V, Sheng ZY, et al. Benefits to decomposition rates when using digestate as compost co-feedstock:part II - Focus on microbial community dynamics[J]. Waste Manag, 2017, 68:85-95.
doi: 10.1016/j.wasman.2017.07.014 URL |
[56] |
Wang K, Yin XB, Mao HL, et al. Changes in structure and function of fungal community in cow manure composting[J]. Bioresour Technol, 2018, 255:123-130.
doi: 10.1016/j.biortech.2018.01.064 URL |
[57] |
Hernández-Lara A, Ros M, Cuartero J, et al. Bacterial and fungal community dynamics during different stages of agro-industrial waste composting and its relationship with compost suppressiveness[J]. Sci Total Environ, 2022, 805:150330.
doi: 10.1016/j.scitotenv.2021.150330 URL |
[58] |
Zhang LL, Ma HX, Zhang HQ, et al. Thermomyces lanuginosus is the dominant fungus in maize straw composts[J]. Bioresour Technol, 2015, 197:266-275.
doi: 10.1016/j.biortech.2015.08.089 URL |
[59] |
Wang XQ, Kong ZJ, Wang YH, et al. Insights into the functionality of fungal community during the large scale aerobic co-composting process of swine manure and rice straw[J]. J Environ Manage, 2020, 270:110958.
doi: 10.1016/j.jenvman.2020.110958 URL |
[60] |
Zhang CS, Xu Y, Zhao MH, et al. Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting[J]. J Hazard Mater, 2018, 344:163-168.
doi: 10.1016/j.jhazmat.2017.10.017 URL |
[61] |
Li J, Bao HY, Xing WJ, et al. Succession of fungal dynamics and their influence on physicochemical parameters during pig manure composting employing with pine leaf biochar[J]. Bioresour Technol, 2020, 297:122377.
doi: 10.1016/j.biortech.2019.122377 URL |
[62] |
Zeng GM, Yu M, Chen YN, et al. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting[J]. Bioresour Technol, 2010, 101(1):222-227.
doi: 10.1016/j.biortech.2009.08.013 URL |
[63] |
Tortosa G, Torralbo F, Maza-Márquez P, et al. Assessment of the diversity and abundance of the total and active fungal population and its correlation with humification during two-phase olive mill waste(“alperujo”)composting[J]. Bioresour Technol, 2020, 295:122267.
doi: 10.1016/j.biortech.2019.122267 URL |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[3] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[4] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[5] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[6] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[7] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[8] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[9] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[10] | 郭文博, 路杨, 隋丽, 赵宇, 邹晓威, 张正坤, 李启云. 球孢白僵菌真菌病毒BbPmV-4外壳蛋白多克隆抗体制备及应用[J]. 生物技术通报, 2023, 39(10): 58-67. |
[11] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[12] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[13] | 韩东晶, 王志花, 周宁, 刘国庆, 杨少华, 汪文君. 白蚁菌圃中木质素降解菌的筛选及降解效果[J]. 生物技术通报, 2022, 38(3): 113-120. |
[14] | 邹雪峰, 李铭刚, 包玲风, 陈齐斌, 赵江源, 汪林, 濮永瑜, 郝大程, 张庆, 杨佩文. 一株分泌型铁载体真菌分离鉴定及生物活性研究[J]. 生物技术通报, 2022, 38(3): 130-138. |
[15] | 刘潮, 褚洪龙, 吴丽芳, 唐利洲, 韩利红. 植物磷稳态的调控机制[J]. 生物技术通报, 2022, 38(2): 184-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||