[1] |
Qi HS, Zhao Y, Wang X, et al. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting[J]. Bioresour Technol, 2021, 330:124960.
doi: 10.1016/j.biortech.2021.124960
URL
|
[2] |
Ren XN, Wang Q, Zhang Y, et al. Improvement of humification and mechanism of nitrogen transformation during pig manure composting with Black Tourmaline[J]. Bioresour Technol, 2020, 307:123236.
doi: 10.1016/j.biortech.2020.123236
URL
|
[3] |
Stevenson FJ. Humus chemistry genesis, composition, reactions[M]. New York: Wiley, 1982.
|
[4] |
Zhao XY, He XS, Xi BD, et al. Response of humic-reducing microorganisms to the redox properties of humic substance during composting[J]. Waste Manag, 2017, 70:37-44.
doi: 10.1016/j.wasman.2017.09.012
URL
|
[5] |
窦森, 肖彦春, 张晋京. 土壤胡敏素各组分数量及结构特征初步研究[J]. 土壤学报, 2006, 43(6):934-940.
|
|
Dou S, Xiao YC, Zhang JJ. Quantities and structural characteristics of various fractions of soil humin[J]. Acta Pedol Sin, 2006, 43(6):934-940.
|
[6] |
Stevenson FJ. Humus Chemistry:Genesis, Composition, Reactions, Second Edition[J]. Journal of Chemical Education, 1995.
|
[7] |
Qi HS, Zhao Y, Zhao XY, et al. Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments:it is meaningful carbon sequestration[J]. Bioresour Technol, 2020, 299:122596.
doi: 10.1016/j.biortech.2019.122596
URL
|
[8] |
明中远. 基于市政污泥好氧堆肥过程的强化腐殖化技术研究[D]. 北京: 清华大学, 2016.
|
|
Ming ZY. Research on the enhenced humification in primary stage of sewage sludge composting[D]. Beijing: Tsinghua University, 2016.
|
[9] |
Jokic A, Wang MC, Liu C, et al. Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature:the role of δ-MnO2[J]. Org Geochem, 2004, 35(6):747-762.
doi: 10.1016/j.orggeochem.2004.01.021
URL
|
[10] |
Wu D, Wei ZM, Mohamed TA, et al. Lignocellulose biomass bioconversion during composting:mechanism of action of lignocellulase, pretreatment methods and future perspectives[J]. Chemosphere, 2022, 286(Pt 1):131635.
doi: 10.1016/j.chemosphere.2021.131635
URL
|
[11] |
Wang LQ, Zhao Y, Liu HL, et al. The action difference of metabolic regulators on carbon conversion during different agricultural organic wastes composting[J]. Bioresour Technol, 2021, 329:124902.
doi: 10.1016/j.biortech.2021.124902
URL
|
[12] |
Zhang S, Wei ZM, Zhao MY, et al. Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO2 release during composting[J]. Bioresour Technol, 2020, 318:124075.
doi: 10.1016/j.biortech.2020.124075
URL
|
[13] |
Lu Q, Zhao Y, Gao XT, et al. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting[J]. Bioresour Technol, 2018, 256:128-136.
doi: 10.1016/j.biortech.2018.01.142
URL
|
[14] |
Malik AA, Puissant J, Buckeridge KM, et al. Land use driven change in soil pH affects microbial carbon cycling processes[J]. Nat Commun, 2018, 9(1):3591.
doi: 10.1038/s41467-018-05980-1
URL
|
[15] |
Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage[J]. Nat Microbiol, 2017, 2:17105.
doi: 10.1038/nmicrobiol.2017.105
pmid: 28741607
|
[16] |
周娇娇, 佘炜怡, 王浩入, 等. 5-氮杂-2-脱氧胞苷对里氏木霉产纤维素酶的影响[J]. 深圳大学学报:理工版, 2017, 34(2):122-131.
|
|
Zhou JJ, She WY, Wang HR, et al. Effect of 5-aza-2’-deoxycytidine on the expression of cellulases in Trichoderma reesei[J]. J Shenzhen Univ Sci Eng, 2017, 34(2):122-131.
|
[17] |
陈忠华. 真菌降解木质素的研究进展及发展前景[J]. 黑龙江畜牧兽医, 2009(9):28-29.
|
|
Chen ZH. Research progress and development prospects of fungal degradation of lignin[J]. Heilongjiang Animal Sci Vet Med, 2009(9):28-29.
|
[18] |
闫智培, 李纪红, 李十中, 等. 木质素对木质纤维素降解性能的影响[J]. 农业工程学报, 2014, 30(19):265-272.
|
|
Yan ZP, Li JH, Li SZ, et al. Effect of lignin on recalcitrance of lignocellulose[J]. Trans Chin Soc Agric Eng, 2014, 30(19):265-272.
|
[19] |
郑春娟, 邓婷婷, 来亚鹏, 等. 真菌纤维素酶表观遗传修饰的研究进展[J]. 纤维素科学与技术, 2018, 26(3):71-77.
|
|
Zheng CJ, Deng TT, Lai YP, et al. Advances on epigenetic modification of fungi cellulase[J]. J Cellul Sci Technol, 2018, 26(3):71-77.
|
[20] |
张鹏飞, 李素艳, 余克非, 等. 木质素降解细菌的筛选及园林废弃物降解研究[J]. 安徽农业大学学报, 2018, 45(4):676-681.
|
|
Zhang PF, Li SY, Yu KF, et al. Screening of lignin-degrading bacteria and study on degradation of garden waste[J]. J Anhui Agric Univ, 2018, 45(4):676-681.
|
[21] |
Zhang ZC, Zhao Y, Yang TX, et al. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting:Amino acids as the key linker to promote humification process[J]. Bioresour Technol, 2019, 291:121882.
doi: 10.1016/j.biortech.2019.121882
URL
|
[22] |
Xiao R, Awasthi MK, Li RH, et al. Recent developments in biochar utilization as an additive in organic solid waste composting:a review[J]. Bioresour Technol, 2017, 246:203-213.
doi: 10.1016/j.biortech.2017.07.090
URL
|
[23] |
Lycus P, Lovise Bøthun K, Bergaust L, et al. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy[J]. ISME J, 2017, 11(10):2219-2232.
doi: 10.1038/ismej.2017.82
URL
|
[24] |
Philippot L, Andert J, Jones CM, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil[J]. Glob Change Biol, 2011, 17(3):1497-1504.
doi: 10.1111/j.1365-2486.2010.02334.x
URL
|
[25] |
Tsutsui H, Fujiwara T, Matsukawa K, et al. Nitrous oxide emission mechanisms during intermittently aerated composting of cattle manure[J]. Bioresour Technol, 2013, 141:205-211.
doi: 10.1016/j.biortech.2013.02.071
URL
|
[26] |
Shi MZ, Zhao XY, Zhu LJ, et al. Elucidating the negative effect of denitrification on aromatic humic substance formation during sludge aerobic fermentation[J]. J Hazard Mater, 2020, 388:122086.
doi: 10.1016/j.jhazmat.2020.122086
URL
|
[27] |
Szanto GL, Hamelers HVM, Rulkens WH, et al. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure[J]. Bioresour Technol, 2007, 98(14):2659-2670.
doi: 10.1016/j.biortech.2006.09.021
URL
|
[28] |
Sprent JI, Freney JR, Simpson JR. Gaseous loss of nitrogen from plant-soil systems[J]. J Appl Ecol, 1985, 22(2):602.
|
[29] |
Kim JK, Park KJ, Cho KS, et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains[J]. Bioresour Technol, 2005, 96(17):1897-1906.
doi: 10.1016/j.biortech.2005.01.040
URL
|
[30] |
Ge JY, Huang GQ, Li JB, et al. Multivariate and multiscale approaches for interpreting the mechanisms of nitrous oxide emission during pig manure-wheat straw aerobic composting[J]. Environ Sci Technol, 2018, 52(15):8408-8418.
doi: 10.1021/acs.est.8b02958
URL
|
[31] |
Xu MY, He ZL, Zhang Q, et al. Responses of aromatic-degrading microbial communities to elevated nitrate in sediments[J]. Environ Sci Technol, 2015, 49(20):12422-12431.
doi: 10.1021/acs.est.5b03442
URL
|
[32] |
Ornston LN. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida:IV. REGULATION[J]. J Biol Chem, 1966, 241(16):3800-3810.
pmid: 5916393
|
[33] |
Hölzer M, Burd W, Reiβig HU, et al. Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas fluorescens BL915[J]. Adv Synth Catal, 2001, 343(6/7):591-595.
doi: 10.1002/1615-4169(200108)343:6/7<591::AID-ADSC591>3.0.CO;2-E
URL
|
[34] |
Wu JQ, Zhao Y, Zhao W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresour Technol, 2017, 226:191-199.
doi: 10.1016/j.biortech.2016.12.031
URL
|
[35] |
Wang SG, Zeng Y. Ammonia emission mitigation in food waste composting:a review[J]. Bioresour Technol, 2018, 248(Pt A):13-19.
|
[36] |
Tang YF, Yang YC, Cheng DD, et al. Value-added humic acid derived from lignite using novel solid-phase activation process with Pd/CeO2 nanocatalyst:a physiochemical study[J]. ACS Sustainable Chem Eng, 2017, 5(11):10099-10110.
doi: 10.1021/acssuschemeng.7b02094
URL
|
[37] |
Havelcová M, Mizera J, Sýkorová I, et al. Sorption of metal ions on lignite and the derived humic substances[J]. J Hazard Mater, 2009, 161(1):559-564.
doi: 10.1016/j.jhazmat.2008.03.136
pmid: 18490104
|
[38] |
Yang F, Tang CY, Antonietti M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms[J]. Chem Soc Rev, 2021, 50(10):6221-6239.
doi: 10.1039/d0cs01363c
pmid: 34027951
|