生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 146-152.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1330
曹英芳1,2(), 赵新2, 刘双2, 李瑞环2, 刘娜2, 徐石勇2, 高芳瑞2, 马卉3, 兰青阔2, 檀建新1, 王永1,2()
收稿日期:
2021-10-20
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
曹英芳,女,硕士研究生,研究方向:生物与医药;E-mail: 基金资助:
CAO Ying-fang1,2(), ZHAO Xin2, LIU Shuang2, LI Rui-huan2, LIU Na2, XU Shi-yong2, GAO Fang-rui2, MA Hui3, LAN Qing-kuo2, TAN Jian-xin1, WANG Yong1,2()
Received:
2021-10-20
Published:
2022-07-26
Online:
2022-08-09
摘要:
GE-J12是中国农业科学院研发的转G2-EPSPS基因和GAT基因的抗除草剂大豆新品系。根据抗除草剂大豆GE-J12品系外源基因插入位点5'端转化体特异性序列设计引物和探针,经引物探针筛选、特异性测试、反应体系和程序优化、标准曲线构建、检测极限和定量极限测试等试验,建立了基于TaqMan水解探针的实时荧光定量PCR检测方法。该方法特异性强、准确度高,在RSD小于25%的情况下检测极限为0.032%,定量极限为0.16%,线性度大于0.992,经5%、3%和1%定值样品测试,与真实值平均偏差为2.87%-16.67%。可用于转基因耐除草剂大豆GE-J12转化体特异性序列含量的精准定量,为GE-J12大豆新品系的检测提供了新方法。
曹英芳, 赵新, 刘双, 李瑞环, 刘娜, 徐石勇, 高芳瑞, 马卉, 兰青阔, 檀建新, 王永. 抗除草剂大豆GE-J12实时荧光定量PCR检测方法的建立[J]. 生物技术通报, 2022, 38(7): 146-152.
CAO Ying-fang, ZHAO Xin, LIU Shuang, LI Rui-huan, LIU Na, XU Shi-yong, GAO Fang-rui, MA Hui, LAN Qing-kuo, TAN Jian-xin, WANG Yong. Establishment of Real-time Fluorescent Quantitative PCR Detection Method for Genetically Modified Herbicide-tolerant Soybean GE-J12[J]. Biotechnology Bulletin, 2022, 38(7): 146-152.
基因名称 Gene name | 引物和探针序列 Primer and probe sequence | 扩增片段大小 Amplified fragment size/bp | 来源 Source |
---|---|---|---|
GE-J12转化体 GE-J12 transformant | 5'-GGCTTTACTAAAATATAAATCCTAA-3' | 91 | 自行设计 |
5'-GGCGTTAATTCAGTACATTA-3' | |||
5'-FAM-TGACGCTTAGACAACTTAATAACACAT-BHQ1-3' | |||
Lectin | 5'-GCCCTCTACTCCACCCCCA-3' | 118 | 农业部2031号公告-8-2013 |
5'-GCCCATCTGCAAGCCTTTTT-3' | |||
5'-FAM-AGCTTCGCCGCTTCCTTCAACTTCAC-BHQ1-3' |
表1 引物和探针
Table 1 Primers and probes used in this study
基因名称 Gene name | 引物和探针序列 Primer and probe sequence | 扩增片段大小 Amplified fragment size/bp | 来源 Source |
---|---|---|---|
GE-J12转化体 GE-J12 transformant | 5'-GGCTTTACTAAAATATAAATCCTAA-3' | 91 | 自行设计 |
5'-GGCGTTAATTCAGTACATTA-3' | |||
5'-FAM-TGACGCTTAGACAACTTAATAACACAT-BHQ1-3' | |||
Lectin | 5'-GCCCTCTACTCCACCCCCA-3' | 118 | 农业部2031号公告-8-2013 |
5'-GCCCATCTGCAAGCCTTTTT-3' | |||
5'-FAM-AGCTTCGCCGCTTCCTTCAACTTCAC-BHQ1-3' |
图1 实时荧光定量PCR特异性检测结果 1:转基因大豆GE-J12;2:大豆受体Jack,其他转基因大豆,转基因玉米,转基因油菜,转基因水稻,转基因棉花,其他非转基因大豆混样
Fig. 1 Specific detection results via real-time fluorescence quantitative PCR 1:Genetically modified soybean GE-J12. 2:Soybean recipient Jack,other genetically modified soybeans,genetically modified corn,genetically modified rapeseed,genetically modified rice,genetically modified cotton,and other non-transgenic soybean mixtures
图2 实时荧光定量PCR体系优化结果 0:空白对照;1:引物0.2 µmol/L、探针0.1 µmol/L;2:引物0.4 µmol/L、探针0.2 µmol/L;3:引物0.5 µmol/L、探针0.25 µmol/L;4:引物0.6 µmol/L、探针0.3 µmol/L;5:引物0.8 µmol/L、探针0.4 µmol/L:6:引物1.0 µmol/L、探针0.5 µmol/L
Fig. 2 Optimization results of real-time fluorescent quanti-tative PCR system 0:Blank control;1:primer 0.2 µmol/L,and probe 0.1 µmol/L;2:primer 0.4 µmol/L,and probe 0.2 µmol/L;3:primer 0.5 µmol/L,and probe 0.25 µmol/L;4:primer 0.6 µmol/L,and probe 0.3 µmol/L;5:primer 0.8 µmol/L,and probe 0.4 µmol/L;6:primer 1.0 µmol/L,and probe 0.5 µmol/L
测试样品Testing sample | 重复1 Repeat 1 | 重复2 Repeat 2 | 重复3 Repeat 3 | 平均偏差 Mean deviation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
拷贝数 Number of copies | 含量 Content/% | 拷贝数 Number of copies | 含量 Content/% | 拷贝数 Number of copies | 含量 Content/% | ||||||||
GE-J12 | Lectin | GE-J12 | Lectin | GE-J12 | Lectin | ||||||||
GE-J12(5%) | 336.20 | 6 322.67 | 5.32 | 318.27 | 6 496.33 | 4.90 | 333.47 | 6 660.00 | 5.01 | 2.87 | |||
GE-J12(3%) | 125.97 | 4 719.33 | 2.67 | 256.67 | 8 025.00 | 3.20 | 238.33 | 8 155.67 | 2.92 | 6.78 | |||
GE-J12(1%) | 117.60 | 9 451.00 | 1.24 | 53.11 | 4 722.33 | 1.12 | 51.87 | 4 538.67 | 1.14 | 16.67 |
表2 样品定值结果
Table 2 Results of sample setting
测试样品Testing sample | 重复1 Repeat 1 | 重复2 Repeat 2 | 重复3 Repeat 3 | 平均偏差 Mean deviation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
拷贝数 Number of copies | 含量 Content/% | 拷贝数 Number of copies | 含量 Content/% | 拷贝数 Number of copies | 含量 Content/% | ||||||||
GE-J12 | Lectin | GE-J12 | Lectin | GE-J12 | Lectin | ||||||||
GE-J12(5%) | 336.20 | 6 322.67 | 5.32 | 318.27 | 6 496.33 | 4.90 | 333.47 | 6 660.00 | 5.01 | 2.87 | |||
GE-J12(3%) | 125.97 | 4 719.33 | 2.67 | 256.67 | 8 025.00 | 3.20 | 238.33 | 8 155.67 | 2.92 | 6.78 | |||
GE-J12(1%) | 117.60 | 9 451.00 | 1.24 | 53.11 | 4 722.33 | 1.12 | 51.87 | 4 538.67 | 1.14 | 16.67 |
DNA模板量 DNA template amount | 重复1 Repeat 1 | 重复2 Repeat 2 | 重复3 Repeat 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ct mean | SD | RSD/% | Ct mean | SD | RSD/% | Ct mean | SD | RSD/% | ||||
100% | 24.13 | 0.05 | 0.23 | 24.09 | 0.07 | 0.31 | 23.92 | 0.08 | 0.35 | |||
20% | 26.29 | 0.07 | 0.26 | 26.24 | 0.03 | 0.12 | 26.19 | 0.07 | 0.26 | |||
4% | 28.51 | 0.04 | 0.15 | 28.47 | 0.06 | 0.23 | 28.57 | 0.15 | 0.51 | |||
0.8% | 30.73 | 0.06 | 0.20 | 30.69 | 0.06 | 0.20 | 30.75 | 0.18 | 0.59 | |||
0.16% | 32.89 | 0.14 | 0.43 | 32.96 | 0.20 | 0.59 | 33.11 | 0.16 | 0.48 | |||
0.032% | 35.21 | 0.42 | 1.20 | 35.22 | 0.37 | 1.04 | 35.44 | 0.67 | 1.89 | |||
0.006 4% | 37.32 | 1.04 | 2.79 | 36.94 | 0.86 | 2.33 | 37.67 | 0.99 | 2.62 | |||
Formula | Y=-3.158X+36.784 | Y=-3.132X+36.683 | Y=-3.286X+37.113 | |||||||||
R2 | 0.992 | 0.995 | 0.992 | |||||||||
Amplification efficiency | 107.3% | 108.6% | 101.5% |
表3 实时荧光定量PCR灵敏度及可重复性测试
Table 3 Sensitivity and repeatability test of real-time fluorescence quantitative PCR
DNA模板量 DNA template amount | 重复1 Repeat 1 | 重复2 Repeat 2 | 重复3 Repeat 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ct mean | SD | RSD/% | Ct mean | SD | RSD/% | Ct mean | SD | RSD/% | ||||
100% | 24.13 | 0.05 | 0.23 | 24.09 | 0.07 | 0.31 | 23.92 | 0.08 | 0.35 | |||
20% | 26.29 | 0.07 | 0.26 | 26.24 | 0.03 | 0.12 | 26.19 | 0.07 | 0.26 | |||
4% | 28.51 | 0.04 | 0.15 | 28.47 | 0.06 | 0.23 | 28.57 | 0.15 | 0.51 | |||
0.8% | 30.73 | 0.06 | 0.20 | 30.69 | 0.06 | 0.20 | 30.75 | 0.18 | 0.59 | |||
0.16% | 32.89 | 0.14 | 0.43 | 32.96 | 0.20 | 0.59 | 33.11 | 0.16 | 0.48 | |||
0.032% | 35.21 | 0.42 | 1.20 | 35.22 | 0.37 | 1.04 | 35.44 | 0.67 | 1.89 | |||
0.006 4% | 37.32 | 1.04 | 2.79 | 36.94 | 0.86 | 2.33 | 37.67 | 0.99 | 2.62 | |||
Formula | Y=-3.158X+36.784 | Y=-3.132X+36.683 | Y=-3.286X+37.113 | |||||||||
R2 | 0.992 | 0.995 | 0.992 | |||||||||
Amplification efficiency | 107.3% | 108.6% | 101.5% |
[1] | 伍圣文, 贾成刚, 崔春. 脱壳处理对火麻蛋白提取、功能特性和消化性的影响[J]. 食品科学技术学报, 2021, 39(4):87-94. |
Wu SW, Jia CG, Cui C. Effects of hulling treatment on extraction, functional properties and digestibility of hemp protein[J]. J Food Sci Technol, 2021, 39(4):87-94. | |
[2] | 袁明, 韩冬伟, 王淑荣, 等. 有机物料替代化学肥料对大豆产量及品质的影响[J]. 大豆科技, 2020(6):15-19. |
Yuan M, Han DW, Wang SR, et al. Effect of organic material replacing chemical fertilizer on yield and quality of soybean[J]. Soybean Sci Technol, 2020(6):15-19. | |
[3] | Sato H, Miura M, Fujieda T, et al. Growth performance responses to increased tryptophan supplementation in growing barrows fed three different very low crude protein corn and soybean meal-based diets fortified with essential amino acids[J]. Anim Sci J, 2021, 92(1):e13605. |
[4] | 何艳, 黄晓伟, 程中一, 等. 新形势下大豆产地土壤环境保护与功能提升的研发建议[J]. 土壤学报, 2021, 58(2):269-280. |
He Y, Huang XW, Cheng ZY, et al. Proposals for research on protection and functional improvement of soil environment in soybean producing area in face of the new situation[J]. Acta Pedol Sin, 2021, 58(2):269-280. | |
[5] | 杨京. 2020年中国大豆市场分析[N]. 粮油市场报, 2021-02-20( B04). |
Yang J. Analysis of China’s soybean market in 2020[N]. Agricultural Science & Technology, 2021-02-20( B04). | |
[6] | Russo C, Simeone M, Perito MA. Educated millennials and credence attributes of food products with genetically modified organisms:knowledge, trust and social media[J]. Sustainability, 2020, 12 (20):8534. |
[7] | 梁晋刚, 贺晓云, 武玉花, 等. 中国农业转基因生物安全标准体系现状与展望[J]. 农业生物技术学报, 2020, 28(5):911-917. |
Liang JG, He XY, Wu YH, et al. Current status and prospects of safety standard system for agricultural genetically modified organisms in China[J]. J Agric Biotechnol, 2020, 28(5):911-917. | |
[8] | 雷杰, 包慧敏, 方彩云, 等. 在分析化学课程中引入病毒及其检测方法的思考[J]. 大学化学, 2020, 35(12):13-20. |
Lei J, Bao HM, Fang CY, et al. Introduction of viruses and its detection methods in the course of analytical chemistry[J]. Univ Chem, 2020, 35(12):13-20.
doi: 10.3866/PKU.DXHX201907020 URL |
|
[9] | 王子骞, 陈彦宇, 齐俊生. 转基因食品安全性分析[J]. 农业与技术, 2020, 40(12):167-169. |
Wang ZQ, Chen YY, Qi JS. Safety analysis of genetically modified food[J]. Agric Technol, 2020, 40(12):167-169. | |
[10] |
Hasell A, Stroud NJ. The differential effects of knowledge on perceptions of genetically modified food safety[J]. Int J Public Opin Res, 2020, 32(1):111-131.
doi: 10.1093/ijpor/edz020 URL |
[11] |
兰青阔, 赵新, 沈晓玲, 等. 基于代谢组学的转基因水稻生物安全评价方法研究[J]. 生物技术通报, 2020, 36(11):222-229.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0198 |
Lan QK, Zhao X, Shen XL, et al. Biosafety assessment technology research for genetically modified rice based on metabolomics[J]. Biotechnol Bull, 2020, 36(11):222-229. | |
[12] | Karalis DT, Karalis T, Karalis S, et al. Genetically modified products, perspectives and challenges[J]. Cureus, 2020, 12(3):e7306. |
[13] |
Yu YT. The study of the impact of genetically modified soybean imports on China’s food safety management[J]. Int J Metrol Qual Eng, 2021, 12:18.
doi: 10.1051/ijmqe/2021016 URL |
[14] | 张先文, 黄冲平, 王东芳, 等. 新形势下高校转基因作物田间试验生物安全管理机制的思考[J]. 农业科技管理, 2021, 40(3):72-77. |
Zhang XW, Huang CP, Wang DF, et al. Considerations on the biosafety management mechanism of field experiment of genetically modified crops in university under the new situation[J]. Manag Agric Sci Technol, 2021, 40(3):72-77. | |
[15] | Gao Y, Tie YQ, Zhao LQ, et al. Rapid internal control reference recombinase-aided amplification assays for EBV and CMV detection[J]. Biomed Environ Sci, 2021, 34(8):650-655. |
[16] |
Wang JY, Mi TZ, Yu ZG, et al. Species-specific detection and quantification of scyphomedusae in Jiaozhou Bay, China, using a quantitative real-time PCR assay[J]. J Oceanol Limnol, 2021, 39(4):1360-1372.
doi: 10.1007/s00343-020-0160-0 URL |
[17] | 于园, 刘国强, 苏圣淋, 等. 玉米转基因成分的检测[J]. 江苏农业学报, 2020, 36(4):836-841. |
Yu Y, Liu GQ, Su SL, et al. Detection of transgenic ingredients in maize[J]. Jiangsu J Agric Sci, 2020, 36(4):836-841. | |
[18] | 陈兆贵, 叶新友, 邢澍祺, 等. 马铃薯卷叶病毒实时荧光定量PCR检测技术研究[J]. 湖南农业科学, 2018(9):9-12. |
Chen ZG, Ye XY, Xing SQ, et al. Study on real time fluorescence quantitative PCR detection technology of potato leaf roll virus[J]. Hunan Agric Sci, 2018(9):9-12. | |
[19] | Fan HY, Hu JY, Luo ZW, et al. Establishment of a real-time fluorescent quantitative RTPCR method for Pineapple mealybug wilt associated virus-2[J]. Plant Dis Pests, 2016, 7(1):22-26. |
[20] | 李瑞环, 刘双, 兰青阔, 等. 转基因耐除草剂大豆ZH10-6多重PCR检测方法的建立[J]. 农业生物技术学报, 2021, 29(8):1640-1648. |
Li RH, Liu S, Lan QK, et al. Establishment of multiplex PCR detection method for genetically modified herbicide tolerant soybean(Glycine max)ZH10-6[J]. J Agric Biotechnol, 2021, 29(8):1640-1648. | |
[21] | 冀志庚, 高学军, 敖金霞, 等. SYBR Green实时定量PCR检测转基因大豆中外源基因拷贝数[J]. 东北农业大学学报, 2011, 42(10):11-15. |
Ji ZG, Gao XJ, Ao JX, et al. Establishment of SYBR Green-base quantitative real-time PCR assay for determining transgene copy number in transgenic soybean[J]. J Northeast Agric Univ, 2011, 42(10):11-15. | |
[22] | 邢珍娟, 董立明, 龙丽坤, 等. 应用多重荧光PCR快速筛查作物中转基因成分研究[J]. 玉米科学, 2021, 29(4):35-42. |
Xing ZJ, Dong LM, Long LK, et al. Rapid screening of genetically modified ingredient in crops by multiplex real-time PCR[J]. J Maize Sci, 2021, 29(4):35-42. | |
[23] | 汪小福, 陈笑芸, 缪青梅, 等. 食品分析水平测试计划(FA-PAS)转基因检测能力验证中的方法分析与质量控制[J]. 中国食品学报, 2016, 16(7):224-230. |
Wang XF, Chen XY, Miao QM, et al. Analysis and quality control for the detection of transgenic in FAPAS proficiency tests[J]. J Chin Inst Food Sci Technol, 2016, 16(7):224-230. | |
[24] |
Bogožalec Košir A, Demšar T, Štebih D, et al. Digital PCR as an effective tool for GMO quantification in complex matrices[J]. Food Chem, 2019, 294:73-78.
doi: 10.1016/j.foodchem.2019.05.029 URL |
[1] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[2] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[3] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[4] | 穆德添, 万凌云, 章瑶, 韦树根, 陆英, 付金娥, 田艺, 潘丽梅, 唐其. 钩藤管家基因筛选及生物碱合成相关基因的表达分析[J]. 生物技术通报, 2023, 39(2): 126-138. |
[5] | 徐圆圆, 赵国春, 郝颖颖, 翁学煌, 陈仲, 贾黎明. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80-89. |
[6] | 陈建军, 赵怡迪, 曹香林. 脂多糖对鲤肠上皮细胞转录组模式的调控分析[J]. 生物技术通报, 2021, 37(8): 213-220. |
[7] | 王欢禹, 常昊宛, 章崇祺, 金卫林, 魏芳. 五种检测嵌合抗原受体表达方法的比较[J]. 生物技术通报, 2021, 37(12): 265-273. |
[8] | 李恬静薇, 邹潇潇, 朱军, 鲍时翔. 长茎葡萄蕨藻胁迫条件下RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2021, 37(10): 266-276. |
[9] | 庞鹏湘, 常燕楠, 尉瑞敏, 郜刚. 马铃薯StSRP1的克隆、表达及生物信息学分析[J]. 生物技术通报, 2019, 35(7): 10-16. |
[10] | 孔春艳, 陈永坤, 王莎莎, 郝大海, 杨宇, 龚明. 小桐子低温胁迫下microRNA实时荧光定量PCR内参的筛选与比较[J]. 生物技术通报, 2019, 35(7): 25-32. |
[11] | 朱锐, 叶雨情, 王雅欣, 杨晨茹, 王红伟, 孙晓晴, 张研, 李尚琪, 李炯棠. 鲤两种孕激素受体基因克隆、表达及比较分析[J]. 生物技术通报, 2019, 35(7): 46-53. |
[12] | 侯岚菲, 杨洪, 邓治, 代龙军, 门中华, 李德军. 橡胶树ADC1的克隆、表达及生物信息学分析[J]. 生物技术通报, 2018, 34(11): 111-119. |
[13] | 李雨,赵磊,陈利,周宇荀,李凯,肖君华. 利用外源RNA作为内参结合qPCR准确检测SF2蛋白RIP富集RNA的效率[J]. 生物技术通报, 2017, 33(5): 78-82. |
[14] | 谢佳, 马晓航, 代嫣然, 吴娟, 向东方, 成水平. 有机质对城市湿地微生物丰度的影响[J]. 生物技术通报, 2017, 33(10): 217-224. |
[15] | 贺婷停, 宋婷, 王超, 张长斌, 王海燕. 短小芽孢杆菌实时荧光定量PCR分析中内参基因的筛选[J]. 生物技术通报, 2016, 32(11): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||