生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 274-283.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0448
王帅1(), 吕鸿睿1, 张昊1, 吴占文1, 肖翠红1, 孙冬梅1,2()
收稿日期:
2022-04-12
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
王帅,男,硕士研究生,研究方向:微生物学;E-mail: 基金资助:
WANG Shuai1(), LV Hong-rui1, ZHANG Hao1, WU Zhan-wen1, XIAO Cui-hong1, SUN Dong-mei1,2()
Received:
2022-04-12
Published:
2023-01-26
Online:
2023-02-02
摘要:
采用生理生化指标结合分子生物学技术对解磷菌PSB-R进行分类学鉴定,确定为粘质沙雷氏菌(Serratia marcescens),通过二代测序平台Illumina NovaSeq PE150对PSB-R进行全基因组测序,分析预测了与解磷能力相关基因及其他植物促生基因组成情况。通过响应面优化试验检测了PSB-R最大解磷能力为805.199 mg/L,连续培养10代后解磷能力稳定且对多种难溶性磷酸盐均具有溶解能力。本研究为解磷菌解磷机制的进一步研究提供了基因组数据基础,同时证实PSB-R具有应用于菌肥的潜力,为后续解磷菌肥的研制提供了研究基础。
王帅, 吕鸿睿, 张昊, 吴占文, 肖翠红, 孙冬梅. 解磷菌PSB-R全基因组测序鉴定及其解磷特性分析[J]. 生物技术通报, 2023, 39(1): 274-283.
WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties[J]. Biotechnology Bulletin, 2023, 39(1): 274-283.
图1 PSB-R鉴定结果 A: PSB-R在无机磷固体培养基表明生长情况;B: PSB-R在营养琼脂表面生长情况;C: PSB-R菌体形态(结晶紫染色);D: 基于16S RNA基因序列构建的系统进化树
Fig. 1 Identification results of PSB-R A: Growth results of PSB-R on inorganic phosphorus medium. B: Growth results of PSB-R on nutrient agar surface. C: Morphology of PSB-R bacteria(crystal violet staining). D: Phylogenetic tree based on 16S rRNA gene sequence
图2 碱基含量与质量分布图 A:碱基含量分布图:横坐标表示碱基所在的reads的位置,纵坐标表示某一位置上各碱基的含量;B:碱基质量分布图:横坐标表示碱基所在的reads的位置,纵坐标为reads该位置上的平均错误率百分比
Fig. 2 Base content and mass distribution map A: Base content distribution map: the abscissa refers to the position of the reads where the base is located, and the ordinate refers to the content of each base at a certain position. B: Base mdistribution map: the abscissa refers to the position of the reads where the base is located, and the ordinate refers to the average error rate percentage at that position of the reads
项目Item | 数据Data |
---|---|
Scaffold数量 Number of Scaffold | 16 |
Contig数量 Number of Contig | 16 |
(G+C)/% | 59.75 |
基因组大小Genome size/bp | 5 061 510 |
预测基因数量 Number of genes | 4 742 |
基因总长度Total gene length/bp | 4 393 551 |
Table 1 Assembly statistics of genomes
项目Item | 数据Data |
---|---|
Scaffold数量 Number of Scaffold | 16 |
Contig数量 Number of Contig | 16 |
(G+C)/% | 59.75 |
基因组大小Genome size/bp | 5 061 510 |
预测基因数量 Number of genes | 4 742 |
基因总长度Total gene length/bp | 4 393 551 |
基因号码Gene code | 基因名称Gene name | 产物名称 Product name | 生物活性 Activity |
---|---|---|---|
PSB.R_GM000437 | gcd | PQQ依赖型葡萄糖脱氢酶 Quinoprotein glucose dehydrogenase | 葡萄糖酸合成 Gluconic acid synthesis |
PSB.R GM001125 | ppq B | PQQ合成蛋白B Cofactor PQQ biosynthesis protein B | |
PSB.R GM001126 | ppq C | PQQ合成蛋白C Cofactor PQQ biosynthesis protein C | |
PSB.R GM001127 | ppq D | PQQ合成蛋白D Cofactor PQQ biosynthesis protein D | |
PSB.R GM001128 | ppq E | PQQ合成蛋白E Cofactor PQQ biosynthesis protein E | |
PSB.R GM001129 | ppq F | PQQ合成蛋白F Cofactor PQQ biosynthesis protein F | |
PSB.R_GM000385 | ent A | 2,3-二氢-2,3-二羟基苯甲酸脱氢酶 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase | 铁载体产生 Siderophore production |
PSB.R_GM003128 | ent C | 异分支酸合成酶C Isochorismate synthase C | |
PSB.R_GM003126 | ent B | 肠杆菌素合成亚基B Enterobactin synthase subunit B | |
PSB.R_GM003127 | ent E | 肠杆菌素合成亚基E Enterobactin synthase subunit E | |
PSB.R_GM003130 | ent F | 肠杆菌素合成亚基F Enterobactin synthase subunit F | |
PSB.R_GM003129 | ent S | 肠杆菌素(铁载体)外排蛋白 Enterobactin(siderophore)exporter | |
PSB.R_GM002907 | exb B | 生物聚合物转运蛋白B Biopolymer transport protein B | |
PSB.R_GM002910 | exb D | 生物聚合物转运蛋白D Biopolymer transport protein D | |
PSB.R_GM004736 | bfr | 细菌铁蛋白 Bacterioferritin | |
PSB.R_GM000070 | ipd C | 吲哚丙酮酸脱羧酶 Indolepyruvate decarboxylase | IAA产生 IAA production |
PSB.R_GM000012 | chi | 几丁质酶 Chitinase | 几丁质酶产生 Chitinase production |
PSB.R_GM003955 | ppx | 外切聚磷酸酶 Exopolyphosphatase | 磷酸盐降解酶 Phosphate degrading enzyme |
PSB.R_GM003047 | ppa | 无机焦磷酸酶 Inorganic pyrophosphatase | |
PSB.R_GM001406 | phn X | 磷酸乙醛水解酶 Phosphonoacetaldehyde hydrolase | |
PSB.R_GM002025 | pho A | 碱性磷酸酶 Alkaline phosphatase |
表2 促生基因预测情况
Table 2 Prediction of growth-promoting genes
基因号码Gene code | 基因名称Gene name | 产物名称 Product name | 生物活性 Activity |
---|---|---|---|
PSB.R_GM000437 | gcd | PQQ依赖型葡萄糖脱氢酶 Quinoprotein glucose dehydrogenase | 葡萄糖酸合成 Gluconic acid synthesis |
PSB.R GM001125 | ppq B | PQQ合成蛋白B Cofactor PQQ biosynthesis protein B | |
PSB.R GM001126 | ppq C | PQQ合成蛋白C Cofactor PQQ biosynthesis protein C | |
PSB.R GM001127 | ppq D | PQQ合成蛋白D Cofactor PQQ biosynthesis protein D | |
PSB.R GM001128 | ppq E | PQQ合成蛋白E Cofactor PQQ biosynthesis protein E | |
PSB.R GM001129 | ppq F | PQQ合成蛋白F Cofactor PQQ biosynthesis protein F | |
PSB.R_GM000385 | ent A | 2,3-二氢-2,3-二羟基苯甲酸脱氢酶 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase | 铁载体产生 Siderophore production |
PSB.R_GM003128 | ent C | 异分支酸合成酶C Isochorismate synthase C | |
PSB.R_GM003126 | ent B | 肠杆菌素合成亚基B Enterobactin synthase subunit B | |
PSB.R_GM003127 | ent E | 肠杆菌素合成亚基E Enterobactin synthase subunit E | |
PSB.R_GM003130 | ent F | 肠杆菌素合成亚基F Enterobactin synthase subunit F | |
PSB.R_GM003129 | ent S | 肠杆菌素(铁载体)外排蛋白 Enterobactin(siderophore)exporter | |
PSB.R_GM002907 | exb B | 生物聚合物转运蛋白B Biopolymer transport protein B | |
PSB.R_GM002910 | exb D | 生物聚合物转运蛋白D Biopolymer transport protein D | |
PSB.R_GM004736 | bfr | 细菌铁蛋白 Bacterioferritin | |
PSB.R_GM000070 | ipd C | 吲哚丙酮酸脱羧酶 Indolepyruvate decarboxylase | IAA产生 IAA production |
PSB.R_GM000012 | chi | 几丁质酶 Chitinase | 几丁质酶产生 Chitinase production |
PSB.R_GM003955 | ppx | 外切聚磷酸酶 Exopolyphosphatase | 磷酸盐降解酶 Phosphate degrading enzyme |
PSB.R_GM003047 | ppa | 无机焦磷酸酶 Inorganic pyrophosphatase | |
PSB.R_GM001406 | phn X | 磷酸乙醛水解酶 Phosphonoacetaldehyde hydrolase | |
PSB.R_GM002025 | pho A | 碱性磷酸酶 Alkaline phosphatase |
图3 单因素试验优化结果 不同小写字母表示处理间差异显著(P<0.05)
Fig. 3 Optimized results by single factor test Different lowercase letters indicate significant difference(P< 0.05)
[1] | 王雪郦, 张芮瑞, 周少奇, 等. 不良环境解磷微生物研究进展[J]. 河南农业科学, 2020, 49(7): 8-17. |
Wang XL, Zhang RR, Zhou SQ, et al. Research progress of phosphate-solubilizing microorganisms in bad environments[J]. J Henan Agric Sci, 2020, 49(7): 8-17. | |
[2] | 吉蓉. 土壤解磷微生物及其解磷机制综述[J]. 甘肃农业科技, 2013(8): 42-45. |
Ji R. Research summary on phosphate dissolution of phosphate solubilizing microorganisms[J]. Gansu Agric Sci Technol, 2013(8): 42-45. | |
[3] |
Schindler DW, Hecky RE, Findlay DL, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. Proc Natl Acad Sci USA, 2008, 105(32): 11254-11258.
doi: 10.1073/pnas.0805108105 pmid: 18667696 |
[4] |
Boubekri K, Soumare A, Mardad I, et al. The screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters[J]. Microorganisms, 2021, 9(3): 470.
doi: 10.3390/microorganisms9030470 URL |
[5] | Whitelaw MA. Growth promotion of plants inoculated with phosphate-solubilizing fungi[J]. Adv Agron, 1999, 69: 99-151. |
[6] |
Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Front Microbiol, 2017, 8: 971.
doi: 10.3389/fmicb.2017.00971 pmid: 28626450 |
[7] |
Xie JG, Yan ZQ, Wang GF, et al. A bacterium isolated from soil in a Karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability[J]. Front Microbiol, 2021, 11: 625450.
doi: 10.3389/fmicb.2020.625450 URL |
[8] |
Reyes I, Bernier L, Antoun H. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum[J]. Microb Ecol, 2002, 44(1): 39-48.
pmid: 12019460 |
[9] | 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1-7. |
Chi JL, Hao M, Wang ZX, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. J Microbiol, 2021, 41(1): 1-7. | |
[10] |
王俊娟, 阎爱华, 王薇, 等. 铁尾矿区油松根际溶磷泛菌D2的筛选鉴定及溶磷特性[J]. 应用生态学报, 2016, 27(11): 3705-3711.
doi: 10.13287/j.1001-9332.201611.003 |
Wang JJ, Yan AH, Wang W, et al. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2(Pantoea sp.)in rhizosphere of Pinus tabuliformis in iron tailings yard[J]. Chin J Appl Ecol, 2016, 27(11): 3705-3711. | |
[11] | 李海云, 姚拓, 张榕, 等. 红三叶根际溶磷菌株分泌有机酸与溶磷能力的相关性研究[J]. 草业学报, 2018, 27(12): 113-121. |
Li HY, Yao T, Zhang R, et al. Relationship between organic acids secreted from rhizosphere phosphate-solubilizing bacteria in Trifolium pratense and phosphate-solubilizing ability[J]. Acta Prataculturae Sin, 2018, 27(12): 113-121. | |
[12] | Zhu FL, Qu LY, Hong XG, et al. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from daqiao saltern on the coast of Yellow Sea of China[J]. Evid Based Complementary Altern Med, 2011, 2011: 615032. |
[13] |
Ochoa-Loza FJ, Artiola JF, Maier RM. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant[J]. J Environ Qual, 2001, 30(2): 479-485.
pmid: 11285908 |
[14] |
Ludueña LM, Anzuay MS, Angelini JG, et al. Strain Serratia sp. S119: a potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms[J]. Appl Soil Ecol, 2018, 126: 107-112.
doi: 10.1016/j.apsoil.2017.12.024 URL |
[15] |
Ludueña LM, Anzuay MS, Angelini JG, et al. Role of bacterial pyrroloquinoline quinone in phosphate solubilizing ability and in plant growth promotion on strain Serratia sp. S119[J]. Symbiosis, 2017, 72(1): 31-43.
doi: 10.1007/s13199-016-0434-7 URL |
[16] |
Chen ML, Ma YK, Wu S, et al. Genome warehouse: a public repository housing genome-scale data[J]. Genomics Proteomics Bioinformatics, 2021, 19(4): 584-589.
doi: 10.1016/j.gpb.2021.04.001 URL |
[17] | 中华人民共和国农业部. NY/T 2421-2013植株全磷含量测定钼锑抗比色法[S]. 国家标准馆, 2013. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. NY/T 2421-2013 Determination of total phosphorus in plant. Vanadium molybdate blue colorimetric method[S]. National Library of Standards, 2013. | |
[18] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 尿素的测定方法第4部分:铁含量邻菲啰啉分光光度法: GB/T 2441.4—2010[S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determination of urea—Part 4: iron content—1, 10-Phenanthroline spectrophotometric method: GB/T 2441.4—2010[S]. Beijing: Standards Press of China, 2011. | |
[19] | 国家统计局. 第七次全国人口普查公报(第二号)[R]. 2021. |
National Bureau of Statistics. Communiqué of the Seventh National Population Census(No. 2)[R]. 2021. | |
[20] |
唐岷宸, 李文静, 宋天顺, 等. 一株高效解磷菌的筛选及其解磷效果验证[J]. 生物技术通报, 2020, 36(6): 102-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0969 |
Tang MC, Li WJ, Song TS, et al. Screening of a highly efficient phosphate-solubilizing bacterium and validation of its phosphate-solubilizing effect[J]. Biotechnol Bull, 2020, 36(6): 102-109. | |
[21] | 魏烈群. 荣成天鹅湖解磷菌的分离筛选及其对沉积物磷释放的影响[D]. 烟台: 烟台大学, 2021. |
Wei LQ. Isolation and screening of phosphate-solubilizing bacteria and the effect on phosphorus release from the sediments in Rongcheng Swan lake[D]. Yantai: Yantai University, 2021. | |
[22] | 朱德旋, 杜春梅, 董锡文, 等. 一株寒地高效解无机磷细菌的分离鉴定及拮抗作用[J]. 微生物学报, 2020, 60(8): 1672-1682. |
Zhu DX, Du CM, Dong XW, et al. Identification and antagonism activity of an inorganic phosphorus-dissolving bacterial strain isolated from cold region[J]. Acta Microbiol Sin, 2020, 60(8): 1672-1682. | |
[23] | 赵伟进, 王孝先, 杨洋, 等. 黑青稞根际促生菌筛选及其对种子萌发的影响[J]. 种子, 2018, 37(12): 1-5, 10. |
Zhao WJ, Wang XX, Yang Y, et al. Selection of rhizotrophic bacteria from rhizosphere and its effect on seed germination of black barley[J]. Seed, 2018, 37(12): 1-5, 10. | |
[24] |
Zhao JJ, Wang S, Zhu XF, et al. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode[J]. Appl Soil Ecol, 2021, 164: 103924.
doi: 10.1016/j.apsoil.2021.103924 URL |
[25] |
陈佳兴, 秦琴, 邱树毅, 等. 磷尾矿土壤中解磷细菌的筛选及解磷能力的测定[J]. 生物技术通报, 2018, 34(6): 183-189.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1122 |
Chen JX, Qin Q, Qiu SY, et al. Isolation, identification of phosphate-solubilizing bacteria derived from phosphate tailing soil and their capacities[J]. Biotechnol Bull, 2018, 34(6): 183-189. | |
[26] | 卢琴, 罗青平, 张腾飞, 等. 灰雁黏质沙雷菌的鉴定及其耐药性分析[J]. 动物医学进展, 2019, 40(2): 130-134. |
Lu Q, Luo QP, Zhang TF, et al. Identification and drug sensitivity test of Serratia marcescens in greylag goose[J]. Prog Vet Med, 2019, 40(2): 130-134. | |
[27] | 乔志伟, 洪坚平, 谢英荷, 等. 石灰性土壤拉恩式溶磷细菌的筛选鉴定及溶磷特性[J]. 应用生态学报, 2013, 24(8): 2294-2300. |
Qiao ZW, Hong JP, Xie YH, et al. Screening, identification and phosphate-solubilizing characteristics of Rahnella sp. phosphate-solubilizing bacteria in calcareous soil[J]. Chin J Appl Ecol, 2013, 24(8): 2294-2300. |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[3] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[4] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[5] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[6] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[7] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
[8] | 张傲洁, 李青云, 宋文红, 颜少慧, 唐爱星, 刘幽燕. 基于苯酚降解的粪产碱杆菌Alcaligenes faecalis JF101的全基因组分析[J]. 生物技术通报, 2023, 39(10): 292-303. |
[9] | 胡珊, 梁卫驱, 黄皓, 徐匆, 罗华建, 胡楚维, 黄晓彦, 陈仕丽. 中药渣堆肥中解磷细菌的筛选、鉴定及其拮抗作用[J]. 生物技术通报, 2022, 38(3): 92-102. |
[10] | 张泽颖, 范清锋, 邓云峰, 韦廷舟, 周正富, 周建, 王劲, 江世杰. 一株高产脂肪酶菌株WCO-9全基因组测序及比较基因组分析[J]. 生物技术通报, 2022, 38(10): 216-225. |
[11] | 薛清, 杜虹锐, 薛会英, 王译浩, 王暄, 李红梅. 苜蓿滑刃线虫线粒体基因组及其系统发育研究[J]. 生物技术通报, 2021, 37(7): 98-106. |
[12] | 陈体强, 徐晓兰, 石林春, 钟礼义. 紫芝栽培品种‘武芝2号’(‘紫芝S2’)全基因组测序及分析[J]. 生物技术通报, 2021, 37(11): 42-56. |
[13] | 倪亮, 张森, 郭盛, 曾飞, 徐明明, 段金廒. 苦参种子深加工过程油脂类副产物发酵产灵菌红素的研究[J]. 生物技术通报, 2020, 36(5): 130-138. |
[14] | 韩雪娇, 曾庆伟, 赵玉萍. 杨树根际解无机磷细菌Mp1-Ha4的鉴定及其解磷机理[J]. 生物技术通报, 2020, 36(3): 141-147. |
[15] | 郭鹤宝, 王星, 何山文, 张晓霞. 表型特征结合基因组分析鉴定不同菌落形态Bacillus velezensis ACCC 19742[J]. 生物技术通报, 2020, 36(2): 142-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||