生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 311-322.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0277
崔若琪1(), 张玲悦2, 江海溶1, 张毓羚1, 张明露1(), 任连海1()
收稿日期:
2023-03-24
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
张明露,女,博士,教授,研究方向:环境微生物学;E-mail: zhangminglu@th.btbu.edu.cn;作者简介:
崔若琪,女,硕士研究生,研究方向:环境微生物学;E-mail: cuiiiirq@163.com
基金资助:
CUI Ruo-qi1(), ZHANG Ling-yue2, JIANG Hai-rong1, ZHANG Yu-ling1, ZHANG Ming-lu1(), REN Lian-hai1()
Received:
2023-03-24
Published:
2023-10-26
Online:
2023-11-28
摘要:
为了缓解厨余垃圾因降解或腐烂产生的恶臭气体所造成的污染,本研究分别从污泥和厨余堆肥中分离筛选出8株对NH3和H2S具有除臭效果的菌株,混合制备成复合微生物除臭菌剂,研究其除臭效果、堆肥过程中的理化性质和微生物群落的变化。由响应面分析得出菌剂对于NH4+-N降解率的最佳条件为温度27℃、pH 6.21、接种量14%时,NH4+-N的降解率为92.55%;菌剂生成SO42-的最佳条件是温度29℃、pH 6.61和接种量5%时,SO42-的最大生成量为173.57 mg/L。厨余垃圾堆肥添加菌剂后NH3的去除率为55.32%,H2S的去除率为61.72%,同时含水率、C/N、pH均有降低,加速了堆体温度的上升,延长了高温持续时间。菌剂的添加有利于微生物群落结构的改变,增加了去除NH3和H2S的微生物丰度,加快了对NH3和H2S的代谢转化过程,抑制了NH3和H2S的释放,对于厨余垃圾恶臭气体的控制有着良好的应用潜力。
崔若琪, 张玲悦, 江海溶, 张毓羚, 张明露, 任连海. NH3和H2S除臭菌剂的制备及其对厨余垃圾堆肥除臭效果和机理探究[J]. 生物技术通报, 2023, 39(10): 311-322.
CUI Ruo-qi, ZHANG Ling-yue, JIANG Hai-rong, ZHANG Yu-ling, ZHANG Ming-lu, REN Lian-hai. Preparation of NH3 and H2S Deodorizing Microbial Agents and Their Deodorizing Effects and Mechanisms on Kitchen Waste Composting[J]. Biotechnology Bulletin, 2023, 39(10): 311-322.
因素 Factor | 水平 Level | ||
---|---|---|---|
-1 | 0 | 1 | |
pH(A) | 5 | 6.5 | 8 |
温度(B)Temperature/℃ | 20 | 27.5 | 35 |
接种量(C)Inoculation volume/% | 1 | 10.5 | 20 |
表1 响应面分析因素和水平
Table 1 Response surface analysis factors and levels
因素 Factor | 水平 Level | ||
---|---|---|---|
-1 | 0 | 1 | |
pH(A) | 5 | 6.5 | 8 |
温度(B)Temperature/℃ | 20 | 27.5 | 35 |
接种量(C)Inoculation volume/% | 1 | 10.5 | 20 |
类别 Category | 菌株编号 Strain No. | 降解率 Degradation rate/% |
---|---|---|
NH3 | X21 | 59.86 |
J3 | 75.14 | |
H2S | X1 | 95.14 |
X2 | 61.11 | |
X6 | 92.11 | |
X7 | 94.74 | |
X10 | 77.78 | |
X20 | 60.17 | |
X21 | 63.14 | |
X31 | 92.75 | |
X32 | 92.20 | |
X33 | 67.47 | |
DX6 | 58.10 | |
DX7 | 54.74 | |
DX13 | 55.50 | |
DX15 | 59.66 | |
DX19 | 50.86 | |
DX20 | 77.76 |
表2 筛选结果及其降解率
Table 2 Screening results and degradation rates
类别 Category | 菌株编号 Strain No. | 降解率 Degradation rate/% |
---|---|---|
NH3 | X21 | 59.86 |
J3 | 75.14 | |
H2S | X1 | 95.14 |
X2 | 61.11 | |
X6 | 92.11 | |
X7 | 94.74 | |
X10 | 77.78 | |
X20 | 60.17 | |
X21 | 63.14 | |
X31 | 92.75 | |
X32 | 92.20 | |
X33 | 67.47 | |
DX6 | 58.10 | |
DX7 | 54.74 | |
DX13 | 55.50 | |
DX15 | 59.66 | |
DX19 | 50.86 | |
DX20 | 77.76 |
项目编号 No. | A | B | C | Y1 | Y2 |
---|---|---|---|---|---|
温度 Temperature/℃ | pH | 接种量Inoculation volume/% | NH4+-N降解率NH4+-N degradation rate/% | SO42-生成量SO42- generation/mg | |
1 | 35 | 6.5 | 1.0 | 32.81 | 85.04 |
2 | 35 | 8.0 | 10.5 | 27.24 | 120.23 |
3 | 27.5 | 6.5 | 10.5 | 96.66 | 176.93 |
4 | 35 | 5.0 | 10.5 | 54.38 | 77.22 |
5 | 20 | 6.5 | 1.0 | 23.29 | 87.00 |
6 | 27.5 | 6.5 | 10.5 | 93.63 | 180.84 |
7 | 27.5 | 6.5 | 10.5 | 93.75 | 190.62 |
8 | 27.5 | 8.0 | 1.0 | 54.38 | 143.70 |
9 | 20 | 8.0 | 10.5 | 20.38 | 94.82 |
10 | 27.5 | 5.0 | 20 | 96.02 | 145.65 |
11 | 27.5 | 6.5 | 10.5 | 61.41 | 188.66 |
12 | 35 | 6.5 | 20 | 40.81 | 126.10 |
13 | 27.5 | 5.0 | 1.0 | 94.76 | 128.05 |
14 | 27.5 | 8.0 | 20 | 94.85 | 128.05 |
15 | 20 | 6.5 | 20 | 44.60 | 79.18 |
16 | 20 | 5.0 | 10.5 | 25.94 | 83.09 |
17 | 27.5 | 6.5 | 10.5 | 94.49 | 186.71 |
表3 BOX-Behnken响应面实验设计及结果
Table 3 Design and results of BOX-Behnken response surface experiment
项目编号 No. | A | B | C | Y1 | Y2 |
---|---|---|---|---|---|
温度 Temperature/℃ | pH | 接种量Inoculation volume/% | NH4+-N降解率NH4+-N degradation rate/% | SO42-生成量SO42- generation/mg | |
1 | 35 | 6.5 | 1.0 | 32.81 | 85.04 |
2 | 35 | 8.0 | 10.5 | 27.24 | 120.23 |
3 | 27.5 | 6.5 | 10.5 | 96.66 | 176.93 |
4 | 35 | 5.0 | 10.5 | 54.38 | 77.22 |
5 | 20 | 6.5 | 1.0 | 23.29 | 87.00 |
6 | 27.5 | 6.5 | 10.5 | 93.63 | 180.84 |
7 | 27.5 | 6.5 | 10.5 | 93.75 | 190.62 |
8 | 27.5 | 8.0 | 1.0 | 54.38 | 143.70 |
9 | 20 | 8.0 | 10.5 | 20.38 | 94.82 |
10 | 27.5 | 5.0 | 20 | 96.02 | 145.65 |
11 | 27.5 | 6.5 | 10.5 | 61.41 | 188.66 |
12 | 35 | 6.5 | 20 | 40.81 | 126.10 |
13 | 27.5 | 5.0 | 1.0 | 94.76 | 128.05 |
14 | 27.5 | 8.0 | 20 | 94.85 | 128.05 |
15 | 20 | 6.5 | 20 | 44.60 | 79.18 |
16 | 20 | 5.0 | 10.5 | 25.94 | 83.09 |
17 | 27.5 | 6.5 | 10.5 | 94.49 | 186.71 |
图1 三因素对NH4+-N降解率和SO42-生成量的响应面图 A:温度和pH对NH4+-N的响应曲面图;B:温度和接种量对NH4+-N的响应曲面图;C:pH和接种量对NH4+-N的响应曲面图;D:温度和pH对SO42-的响应曲面图;E:温度和接种量对SO42-的响应曲面图;F:pH和接种量对SO42-的响应曲面图
Fig. 1 Response surface plot of three factors on NH4+-N degradation rate and SO42- production A: Response surface plots of temperature and pH to NH4+-N. B: Response surface plots of temperature and inoculation amount to NH4+-N. C: Response surface plot of pH and inoculation amount to NH4+-N. D: Response surface plots of temperature and pH to SO42-. E: Response surface plots of temperature and inoculation amount to SO42-. F: Response surface plot of pH and inoculation amount to SO42-
图4 堆肥样品中门水平微生物群落组成 K1-K19, S1-19分别为空白组与实验组第1、3、5、7、9、11、13、15、17、19 天堆肥样品,下同
Fig. 4 Composition of microbial community at phylum level in compost samples K1-K19 and S1-S19 are the compost samples on day 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 for the blank group and the experimental group, respectively. The same below
[1] | 李欢, 周颖君, 刘建国, 等. 我国厨余垃圾处理模式的综合比较和优化策略[J]. 环境工程学报, 2021, 15(7): 2398-2408. |
Li H, Zhou YJ, Liu JG, et al. Comprehensive comparison and optimal strategies of food waste treatment modes[J]. Chin J Environ Eng, 2021, 15(7): 2398-2408. | |
[2] | 毛元坤, 张子辰, 刘世奇, 等. 黑水虻生物处理餐厨垃圾与剩余污泥的效果[J]. 环境工程技术学报, 2023, 13(2): 793-799. |
Mao YK, Zhang ZC, Liu SQ, et al. Effect of biotreatment of kitchen waste and excess activated sludge by black soldier fly[J]. J Environ Eng Technol, 2023, 13(2): 793-799. | |
[3] | 张红玉, 邹克华, 杨金兵, 等. 厨余垃圾堆肥过程中恶臭物质分析[J]. 环境科学, 2012, 33(8): 2563-2568. |
Zhang HY, Zou KH, Yang JB, et al. Analysis of odor pollutants in kitchen waste composting[J]. Environ Sci, 2012, 33(8): 2563-2568. | |
[4] |
Lou ZY, Wang MC, Zhao YC, et al. The contribution of biowaste disposal to odor emission from landfills[J]. J Air Waste Manag Assoc, 2015, 65(4): 479-484.
doi: 10.1080/10962247.2014.1002870 URL |
[5] |
马石霞, 摆倩文, 周魏, 等. 微生物除臭剂应用于畜禽养殖场的研究现状[J]. 浙江农业学报, 2021, 33(8): 1552-1564.
doi: 10.3969/j.issn.1004-1524.2021.08.22 |
Ma SX, Bai QW, Zhou W, et al. Application of microbial deodorant in livestock and poultry farms[J]. Acta Agric Zhejiangensis, 2021, 33(8): 1552-1564.
doi: 10.3969/j.issn.1004-1524.2021.08.22 |
|
[6] | 王茄灵, 吕青阳, 刘杨, 等. 基于原位控制技术的粪污除臭菌剂研发现状[J]. 应用与环境生物学报, 2022, 28(5): 1357-1366. |
Wang JL, Lü QY, Liu Y, et al. Research and development status of fecal microbial deodorant based on in situ control technology[J]. Chin J Appl Environ Biol, 2022, 28(5): 1357-1366. | |
[7] | 李玥, 李成成, 李静, 等. 鸡粪除臭菌的分离筛选及除臭效果分析[J]. 农业环境科学学报, 2020, 39(5): 1103-1110. |
Li Y, Li CC, Li J, et al. Isolation and screening of deodorant bacterial strains from chicken manure and analysis of their deodorant effects[J]. J Agro Environ Sci, 2020, 39(5): 1103-1110. | |
[8] | 曾苏, 李南华, 盛洪产, 等. 微生物除臭剂的筛选、复配及其除臭条件的优化[J]. 环境科学, 2015, 36(1): 259-265. |
Zeng S, Li NH, Sheng HC, et al. Screening, combination of microbial deodorizer and the optimization of its deodorizing conditions[J]. Environ Sci, 2015, 36(1): 259-265.
pmid: 25898673 |
|
[9] |
王晓莉, 张文文, 吴庆, 等. 餐厨废弃物脱硫菌分离筛选与鉴定[J]. 生物技术通报, 2020, 36(8): 87-95.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0825 |
Wang XL, Zhang WW, Wu Q, et al. Isolation, screening and identification of desulfurization bacteria from kitchen waste[J]. Biotechnol Bull, 2020, 36(8): 87-95. | |
[10] | 方飚. 生活垃圾堆肥除臭菌剂的开发与制备[D]. 北京: 北京化工大学, 2021. |
Fang B. Development and preparation of deodorant bacteria for domestic waste compost[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
[11] | 陈书安, 黄为一, 赵兵. 除臭微生物分离和筛选方法的改进与应用[J]. 生物技术通报, 2006(5): 126-129. |
Chen S, Huang WY, Zhao B. Modification and application of the method to isolate and screen de-odorizing microorganism[J]. Biotechnol Bull, 2006(5): 126-129. | |
[12] | 许丽娟, 任杰, 张德元, 等. 城市生活垃圾除臭微生物的筛选及效果测定[J]. 湖南农业科学, 2010(21): 19-21. |
Xu LJ, Ren J, Zhang DY, et al. Screening and effective detection of deodorizing microorganism on urban domestic waste[J]. Hunan Agric Sci, 2010(21): 19-21. | |
[13] | 中华人民共和国环境保护部.环境空气和废气氨的测定纳氏试剂分光光度法: HJ 533—2009[S]. 北京: 中国环境科学出版社, 2010. |
Ministry of Environmental Protection of the People's Republic of China.Air and exhaust gas-Determination of ammonia-Nessler's reagent spetcrophotometry: HJ 533—2009[S]. Beijing: China Environmental Science Press, 2010. | |
[14] | 中华人民共和国卫生部. 居住区大气中硫化氢卫生检验标准方法亚甲蓝分光光度法: GB 11742—1989[S]. |
Ministry of Health of the People’s Republic of China. Standard method for examination of hydrogen sulfide in air of residential areas-Methylene blue spectrophotometric method: GB 11742—1989[S]. | |
[15] | 萨初拉, 陶金山, 苏少锋, 等. 微生物拮抗检测方法的优化及其在秸秆发酵用菌株的应用[J]. 畜牧与饲料科学, 2020, 41(5): 19-26. |
Sachula, Tao JS, Su SF, et al. Optimization of microbial antagonism detection method and its application in microbes served as silage additives[J]. Anim Husb Feed Sci, 2020, 41(5): 19-26. | |
[16] | 陈威旺. 复合微生物菌剂的制备及投加策略对农村易腐生活垃圾堆肥效果影响研究[D]. 杭州: 浙江大学, 2020. |
Chen WW. Research on the influence of the preparation and dosing strategy of compound microbial agent on the composting effect of rural perishable domestic waste[D]. Hangzhou: Zhejiang University, 2020. | |
[17] |
Lu Y, Chow AT, Liu LJ, et al. Effects of Vallisneria natans on H2S and S2- releases in black-odorous waterbody under additional nitrate: comprehensive performance and microbial community structure[J]. J Environ Manage, 2022, 316: 115226.
doi: 10.1016/j.jenvman.2022.115226 URL |
[18] |
Haosagul S, Prommeenate P, Hobbs G, et al. Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H2S in biogas from swine anaerobic digester[J]. Renew Energy, 2020, 150: 973-980.
doi: 10.1016/j.renene.2019.11.139 URL |
[19] |
Lee M, Woo SG, Ten LN. Shinella daejeonensis sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant[J]. Int J Syst Evol Microbiol, 2011, 61(9): 2123-2128.
doi: 10.1099/ijs.0.026435-0 URL |
[20] | Chen P, Li S, Zheng X, et al. Heterotrophic nitrification by bacterium Shinella zoogloeoides sp. CPZ56[J]. Fresenius Environmental Bulletin, 2016, 25(8):3017-3022. |
[21] |
Guo HH, Gu J, Wang XJ, et al. Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure[J]. Bioresour Technol, 2020, 298: 122384.
doi: 10.1016/j.biortech.2019.122384 URL |
[22] |
Chen L, Li WG, Zhao Y, et al. Isolation and application of a mixotrophic sulfide-oxidizing Cohnella thermotolerans LYH-2 strain to sewage sludge composting for hydrogen sulfide odor control[J]. Bioresour Technol, 2022, 345: 126557.
doi: 10.1016/j.biortech.2021.126557 URL |
[23] | 牛永艳, 穆永松, 毛婷, 等. 除臭微生物的筛选复配及其在堆肥中的应用[J]. 微生物学报, 2023, 63(4): 1531-1540. |
Niu YY, Mu YS, Mao T, et al. Deodorizing microorganisms: screening and application in composting[J]. Acta Microbiol Sin, 2023, 63(4): 1531-1540. | |
[24] | 宋冠林, 王安琪, 路来风, 等. 生物有机肥发酵菌剂的制备工艺优化[J]. 天津科技大学学报, 2022, 37(6): 18-26. |
Song GL, Wang AQ, Lu LF, et al. Optimization of preparation technology of fermentation agent of bio-organic fertilizer[J]. J Tianjin Univ Sci Technol, 2022, 37(6): 18-26. | |
[25] | 姜继韶, 黄懿梅, 黄华, 等. 猪粪秸秆高温堆肥过程中碳氮转化特征与堆肥周期探讨[J]. 环境科学学报, 2011, 31(11): 2511-2517. |
Jiang JS, Huang YM, Huang H, et al. Carbon and nitrogen dynamics and stabilization time of a swine manure-straw compost[J]. Acta Sci Circumstantiae, 2011, 31(11): 2511-2517. | |
[26] | 张铁文. 纤维素、木质素高效分解菌株的筛选及其在作物秸秆资源化利用中的作用研究[D]. 陕西: 西安建筑科技大学, 2020. |
Zhang TW. Screening of strains that efficiently decompose cellulose and lignin and their role in the utilization of crop straw resources[D]. Shaanxi: Xi'an University of Architecture and Technology, 2020. | |
[27] |
张生伟, 黄旺洲, 姚拓, 等. 高效微生物除臭剂在畜禽粪便堆制中的应用效果及其除臭机理研究[J]. 草业学报, 2016, 25(9): 142-151.
doi: 10.11686/cyxb2015388 |
Zhang SW, Huang WZ, Yao T, et al. Effects of efficient microbial deodorizer in livestock manure composting and its deodorizing mechanism[J]. Acta Prataculturae Sin, 2016, 25(9): 142-151. | |
[28] | 张生伟. 猪粪高效除臭菌株筛选及其除臭机理研究[D]. 兰州: 甘肃农业大学, 2016. |
Zhang SW. Screening of efficient deodorant microbial strains and deodorizing mechanism of swine feces[D]. Lanzhou: Gansu Agricultural University, 2016. | |
[29] | 袁小迈, 王梓廷. 不同牛粪和甘蔗渣堆肥策略对细菌群落的影响[J]. 基因组学与应用生物学, 2023, 42(5):528-541. |
Yuan XM, Wang ZT. Effects of different cattle manure and bagasse composting strategies on bacterial communities[J]. Genom Appl Biol, 2023, 42(5):528-541. | |
[30] | 袁续胜, 孟棒棒, 黄慧, 等. 基于我国典型村镇生活垃圾特性的利用处置途径分析[J]. 环境工程, 2023, 41(3): 216-221. |
Yuan XS, Meng BB, Huang H, et al. Analysis of utilization and disposal methods of typical rural solid waste in China based on its characteristics[J]. Environ Eng, 2023, 41(3): 216-221. | |
[31] |
Wei HW, Wang LH, Hassan M, et al. Succession of the functional microbial communities and the metabolic functions in maize straw composting process[J]. Bioresour Technol, 2018, 256: 333-341.
doi: 10.1016/j.biortech.2018.02.050 URL |
[32] | 张玉娜. 生活垃圾腐烂释放恶臭废气特征与微生物的作用机制研究[D]. 广州: 广东工业大学, 2020. |
Zhang YN. Malodorous gases production from food wastes decomposition by indigenous microorganisms[D]. Guangzhou: Guangdong University of Technology, 2020. | |
[33] |
Li YC, Liu YD, Yong XY, et al. Odor emission and microbial community succession during biogas residue composting covered with a molecular membrane[J]. Bioresour Technol, 2020, 297: 122518.
doi: 10.1016/j.biortech.2019.122518 URL |
[34] |
Mishra SS, Markande AR, Keluskar RP, et al. Simultaneous nitrification and denitrification by novel heterotrophs in remediation of fish processing effluent[J]. J Basic Microbiol, 2015, 55(6): 772-779.
doi: 10.1002/jobm.v55.6 URL |
[35] |
Wu XL, Zhou H, Li LZ, et al. Whole genome sequencing and comparative genomic analyses of Lysinibacillus pakistanensis LZH-9, a halotolerant strain with excellent COD removal capability[J]. Microorganisms, 2020, 8(5): 716.
doi: 10.3390/microorganisms8050716 URL |
[36] | 陶旭锋. 胰腺炎肠道菌群失衡促进腺泡-导管化生的分子机制研究[D]. 大连: 大连理工大学, 2021. |
Tao XF. Molecular mechanism study of acinar-to-ductal Metaplasia promoted by the imbalance of intestinal flora in pancreatitis[D]. Dalian: Dalian University of Technology, 2021. | |
[37] |
Gao XZ, Xu ZC, Li Y, et al. Bacterial dynamics for gaseous emission and humification in bio-augmented composting of kitchen waste[J]. Sci Total Environ, 2021, 801: 149640.
doi: 10.1016/j.scitotenv.2021.149640 URL |
[38] |
de Gannes V, Eudoxie G, Hickey WJ. Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing[J]. Bioresour Technol, 2013, 133: 573-580.
doi: 10.1016/j.biortech.2013.01.138 URL |
[39] | 赵阳阳, 刘银双, 牛宏进, 等. 鸡粪好氧堆肥过程中细菌群落结构和功能分析[J]. 生物工程学报, 2023, 39(3): 1175-1187. |
Zhao YY, Liu YS, Niu HJ, et al. The structure and function analysis of bacterial community during aerobic composting of chicken manure[J]. Chin J Biotechnol, 2023, 39(3): 1175-1187. | |
[40] |
Asano R, Otawa K, Ozutsumi Y, et al. Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure[J]. J Biosci Bioeng, 2010, 110(4): 419-425.
doi: 10.1016/j.jbiosc.2010.04.006 pmid: 20547374 |
[41] |
Qiu XW, Zhou GX, Chen L, et al. Additive quality influences the reservoir of antibiotic resistance genes during chicken manure composting[J]. Ecotoxicol Environ Saf, 2021, 220: 112413.
doi: 10.1016/j.ecoenv.2021.112413 URL |
[42] |
Qi HS, Zhao Y, Wang X, et al. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting[J]. Bioresour Technol, 2021, 330: 124960.
doi: 10.1016/j.biortech.2021.124960 URL |
[43] |
Martínez-Cuesta MC, Peláez C, Eagles J, et al. YtjE from Lactococcus lactis IL1403 is a C-S lyase with alpha, gamma-elimination activity toward methionine[J]. Appl Environ Microbiol, 2006, 72(7): 4878-4884.
doi: 10.1128/AEM.00712-06 URL |
[44] |
Zhang C, Gao Z, Shi WC, et al. Material conversion, microbial community composition and metabolic functional succession during green soybean hull composting[J]. Bioresour Technol, 2020, 316: 123823.
doi: 10.1016/j.biortech.2020.123823 URL |
[45] |
Guo XC, Liu S, Wang Z, et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron[J]. Chemosphere, 2014, 112: 1-8.
doi: 10.1016/j.chemosphere.2014.03.068 pmid: 25048881 |
[46] |
Zheng MS, Zhou N, Liu SF, et al. N2O and NO emission from a biological aerated filter treating coking wastewater: main source and microbial community[J]. J Clean Prod, 2019, 213: 365-374.
doi: 10.1016/j.jclepro.2018.12.182 URL |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[3] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[4] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[5] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[6] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[7] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[8] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[9] | 李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122. |
[10] | 晏雄鹰, 王振, 王霞, 杨世辉. 微生物硫代谢与抗逆性[J]. 生物技术通报, 2023, 39(11): 150-167. |
[11] | 王欣怡, 王晓倩, 王红军, 晁跃辉. FLAG标签纳米抗体的筛选、表达及验证[J]. 生物技术通报, 2023, 39(10): 323-331. |
[12] | 刘金升, 陈振娅, 霍毅欣, 郭淑元. FACS技术在酶定向进化中的应用[J]. 生物技术通报, 2023, 39(10): 93-106. |
[13] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[14] | 王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268. |
[15] | 赵子玉, 王春光, 吕建存, 李继开, 张铁. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38(6): 235-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||