生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 63-69.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0848
卢振万1,2(), 李雪琪1,2,3, 黄金光3, 周焕斌1,2()
收稿日期:
2022-07-10
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
卢振万,男,硕士研究生,研究方向:分子植物病理学;E-mail: 基金资助:
LU Zhen-wan1,2(), LI Xue-qi1,2,3, HUANG Jin-guang3, ZHOU Huan-bin1,2()
Received:
2022-07-10
Published:
2023-02-26
Online:
2023-03-07
摘要:
草甘膦是目前使用最广泛的广谱灭生性除草剂,培育耐草甘膦基因编辑水稻将有助于改善稻田杂草化学防控效果、减少用药量和简化防控措施。本研究利用胞嘧啶碱基编辑技术对水稻内源草甘膦靶标蛋白基因OsEPSPS的第177位脯氨酸密码子进行碱基定向替换,通过农杆菌介导的遗传转化获得了靶碱基C定向替换为T的OsEPSPS(P177L)编辑材料,在其自交后代中分离鉴定获得了无外源转基因成分的纯合编辑水稻材料OsEPSPS(P177L)。载药平板试验和喷雾塔喷施试验结果表明OsEPSPS (P177L)纯合编辑水稻材料对草甘膦具有明显的抗性,可耐受四倍的草甘膦田间推荐剂量浓度。进一步调查发现P177L突变并不会对株高和发芽率等经济性状造成干扰。本研究获得的耐草甘膦水稻碱基编辑新种质OsEPSPS(P177L)为水稻的草甘膦抗性改良和稻田的杂草防治开辟了一条新的途径。
卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69.
LU Zhen-wan, LI Xue-qi, HUANG Jin-guang, ZHOU Huan-bin. Creation of Glyphosate-tolerant Rice by Cytosine Base Editing[J]. Biotechnology Bulletin, 2023, 39(2): 63-69.
名称 Name | 抗性/菌株 Resistance/Species | 来源 Source | |
---|---|---|---|
Plasmid | pENTR4:sgRNA5 | KanR | Lab stock |
pUbi:rBE22 | KanR | Lab stock | |
Strain | JM109 | Escherichia coli | Lab stock |
EHA105 | Agrobacterium tumefaciens | Lab stock |
表1 载体与菌株
Table 1 Bacterial strains and plasmids
名称 Name | 抗性/菌株 Resistance/Species | 来源 Source | |
---|---|---|---|
Plasmid | pENTR4:sgRNA5 | KanR | Lab stock |
pUbi:rBE22 | KanR | Lab stock | |
Strain | JM109 | Escherichia coli | Lab stock |
EHA105 | Agrobacterium tumefaciens | Lab stock |
图1 水稻OsEPSPS和牛筋草EiEPSPS的氨基酸序列比对 EiEPSPS-R(CAD01095.1)和EiEPSPS-S(CAD01096.1)分别来自抗性和敏感性牛筋草[22]。EiEPSPS-P106位点用红框标记
Fig. 1 Amino acid sequence alignment of rice OsEPSPS and Eleusine indica EiEPSPS EiEPSPS-R(CAD01095.1)and EiEPSPS-S(CAD01096.1)were isolated from the resistant(R)and sensitive(S)Eleusine indica biotypes, respectively[22]. EiEPSPS-P106 site is highlighted in red box
图2 T0代碱基编辑材料的鉴定 A:水稻OsEPSPS基因靶位点设计;B:T0代植株OsEPSPS基因靶碱基编辑的检测结果。PAM序列标记绿色显示,靶标序列用加粗标注,红色区域为靶碱基以及靶氨基酸,蓝色区域代表已突变预期的碱基及相应的氨基酸,测序峰图中的突变碱基用下划线标记
Fig. 2 Identification of base editing materials in T0 A: Design of the rice OsEPSPS gene target site. B: Detected results of the OsEPSPS target base editing in T0 transgenic plants. PAM sequences, target sequences, the target bases and target amino acids, and the mutated predicted bases and corresponding amino acids are highlighted in green, bold, red, and blue, respectively. The mutated bases in the sequencing chromatograms are underlined
图3 无外源转基因成分且纯合突变的碱基编辑材料OsEPSPS(P177L)鉴定 A:碱基编辑材料#105的自交后代的外源T-DNA元件(sgRNA、Hyg 和Cas9)分离的检测结果。Kit为野生型Kitaake,泳道1-15为T1代植株;B:部分无转基因成分的T1代植株靶位点测序结果。PAM序列标记绿色显示,靶标序列用加粗标注,红色区域为靶碱基以及靶氨基酸,蓝色区域代表已突变预期的碱基及相应的氨基酸,测序峰图中的突变碱基用下划线标记
Fig. 3 Identification of base editing materials OsEPSPS(P177L)without exogenous components and homozygous mutations A: Separation detection of exogenous T-DNA elements(sgRNA, Hyg and Cas9)from self-progeny of base editing material #105. Kit is wild-type Kitaake, and lane 1-15 is the T1 plants of #105. B: Sequencing results of the target sites in transgene-free T1 progeny plants. PAM sequences, target sequence, the target bases and target amino acids, and the mutated predicted bases/corresponding amino acids are highlighted in green, bold, red, and blue, respectively. The mutated bases in the sequencing chromatograms are underlined
图4 碱基编辑材料OsEPSPS(P177L)对草甘膦的抗性检测 A:OsEPSPS(P177L)种子在含草甘膦1/2MS培养基上培养14 d后的萌发生长情况,Bar=5 cm;B:利用喷雾塔对OsEPSPS(P177L)水稻2-3叶期幼苗进行喷施草甘膦处理14 d后的情况,以草甘膦田间推荐剂量为1 350 g a.i./ha作为1×
Fig. 4 Glyphosate-tolerance assay of base editing materials OsEPSPS(P177L)plants A: Germination assay of OsEPSPS(P177L)seeds in cylinders containing 1/2MS with glyphosate, and photos were taken after 14 d treatment. Bar=5 cm. B: Glyphosate-tolerance assay of OsEPSPS(P177L)seedling by spraying glyphosate with spray tower, photographs were taken at 14 d respectively,the recommended dose of glyphosate in the field was 1 350 g a.i./ha as 1×
[1] |
Nguyen N, Ferrero A. Meeting the challenges of global rice production[J]. Paddy Water Environ, 2006, 4(1): 1-9.
doi: 10.1007/s10333-005-0031-5 URL |
[2] |
Farooq M, Siddique KHM, Rehman H, et al. Rice direct seeding: Experiences, challenges and opportunities[J]. Soil Tillage Res, 2011, 111(2): 87-98.
doi: 10.1016/j.still.2010.10.008 URL |
[3] | Akbar N, Ehsanullah, Jabran K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
[4] |
Singh Y, Singh VP, Singh G, et al. The implications of land preparation, crop establishment method and weed management on rice yield variation in the rice-wheat system in the Indo-Gangetic plains[J]. Field Crops Res, 2011, 121(1): 64-74.
doi: 10.1016/j.fcr.2010.11.012 URL |
[5] |
Chauhan BS. Effect of tillage systems, seeding rates, and herbicides on weed growth and grain yield in dry-seeded rice systems in the Philippines[J]. Crop Prot, 2013, 54: 244-250.
doi: 10.1016/j.cropro.2013.09.001 URL |
[6] |
Antralina M, Istina IN, Yuwariah Y, et al. Effect of difference weed control methods to yield of lowland rice in the SOBARI[J]. Procedia Food Sci, 2015, 3: 323-329.
doi: 10.1016/j.profoo.2015.01.035 URL |
[7] |
Chauhan BS, Awan TH, Abugho SB, et al. Effect of crop establishment methods and weed control treatments on weed management, and rice yield[J]. Field Crops Res, 2015, 172: 72-84.
doi: 10.1016/j.fcr.2014.12.011 URL |
[8] |
Duke SO, Powles SB. Glyphosate: a once-in-a-century herbicide[J]. Pest Manag Sci, 2008, 64(4): 319-325.
doi: 10.1002/ps.1518 pmid: 18273882 |
[9] |
Steinrücken HC, Amrhein N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase[J]. Biochem Biophys Res Commun, 1980, 94(4): 1207-1212.
doi: 10.1016/0006-291X(80)90547-1 URL |
[10] |
Herrmann KM. The shikimate pathway: early steps in the biosynthesis of aromatic compounds[J]. Plant Cell, 1995, 7(7): 907-919.
doi: 10.2307/3870046 URL |
[11] |
Roberts F, Roberts CW, Johnson JJ, et al. Evidence for the shikimate pathway in apicomplexan parasites[J]. Nature, 1998, 393(6687): 801-805.
doi: 10.1038/31723 URL |
[12] |
Richards TA, Dacks JB, Campbell SA, et al. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements[J]. Eukaryot Cell, 2006, 5(9): 1517-1531.
pmid: 16963634 |
[13] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
doi: 10.1038/nature17946 URL |
[14] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471.
doi: 10.1038/nature24644 URL |
[15] |
Ren B, Yan F, Kuang YJ, et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice[J]. Sci China Life Sci, 2017, 60(5): 516-519.
doi: 10.1007/s11427-016-0406-x pmid: 28260228 |
[16] |
Yan F, Kuang YJ, Ren B, et al. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice[J]. Mol Plant, 2018, 11(4): 631-634.
doi: S1674-2052(18)30058-3 pmid: 29476918 |
[17] |
Kuang YJ, Li SF, Ren B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Mol Plant, 2020, 13(4): 565-572.
doi: S1674-2052(20)30010-1 pmid: 32001363 |
[18] |
Zhang R, Liu JX, Chai ZZ, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5): 480-485.
doi: 10.1038/s41477-019-0405-0 pmid: 30988404 |
[19] |
Tian SW, Jiang LJ, Cui XX, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant Cell Rep, 2018, 37(9): 1353-1356.
doi: 10.1007/s00299-018-2299-0 pmid: 29797048 |
[20] |
Liu XS, Qin RY, Li J, et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant Biotechnol J, 2020, 18(9): 1845-1847.
doi: 10.1111/pbi.13348 pmid: 31985873 |
[21] |
Liu L, Kuang YJ, Yan F, et al. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2[J]. Plant Biotechnol J, 2021, 19(1): 5-7.
doi: 10.1111/pbi.13430 URL |
[22] |
Baerson SR, Rodriguez DJ, Tran M, et al. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase[J]. Plant Physiol, 2002, 129(3): 1265-1275.
pmid: 12114580 |
[23] |
Zhou HB, Liu B, Weeks DP, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Res, 2014, 42(17): 10903-10914.
doi: 10.1093/nar/gku806 pmid: 25200087 |
[24] |
Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J, 1994, 6(2): 271-282.
doi: 10.1046/j.1365-313x.1994.6020271.x pmid: 7920717 |
[25] | Cui Y, Huang SQ, Liu ZD, et al. Development of novel glyphosate-tolerant Japonica rice lines: a step toward commercial release[J]. Front Plant Sci, 2016, 7: 1218. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 刘佳慧, 刘叶, 花尔并, 王猛. 谷氨酸棒杆菌中胞嘧啶碱基编辑工具的PAM拓展[J]. 生物技术通报, 2023, 39(9): 49-57. |
[5] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 范昕琦, 王海燕, 陈静, 张晓娟, 郭琦, 梁笃, 周福平, 聂萌恩, 张一中, 柳青山. EMS诱变对高粱成苗及M1主要农艺性状的影响[J]. 生物技术通报, 2023, 39(7): 173-184. |
[8] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[9] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[10] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[11] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[12] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[13] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[14] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
[15] | 王翠翠, 傅达奇. 泛素-蛋白酶体系统影响植物农艺性状的研究进展[J]. 生物技术通报, 2023, 39(1): 72-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||