生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 70-79.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0579
陈奕博1(), 杨万明2, 岳爱琴1, 王利祥1, 杜维俊1(), 王敏1()
收稿日期:
2022-05-10
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
陈奕博,男,硕士研究生,研究方向:大豆遗传育种与种质创新;E-mail: 基金资助:
CHEN Yi-bo1(), YANG Wan-ming2, YUE Ai-qin1, WANG Li-xiang1, DU Wei-jun1(), WANG Min1()
Received:
2022-05-10
Published:
2023-02-26
Online:
2023-03-07
摘要:
通过连续2年对大豆苗期耐盐性状进行QTL定位,为大豆苗期耐盐性状提供新的基因位点,为深入了解控制大豆耐盐性的遗传效应及其在染色体上的位置提供依据。以栽培大豆品种晋大53为母本、野生大豆品种平南为父本杂交衍生的重组自交系群体(RIL)为材料,在大豆苗期,盐处理后以致死浓度(PDC)作为耐盐指标,结合基于SLAF标记构建的大豆遗传图谱,采用复合区间作图法检测大豆苗期耐盐性状的QTL位点。结果表明,2年不同环境下共检测到12个QTL位点,分布于第2、3、5、7、9、11、13、15、18和20染色体,遗传变异解释率为23.24%-38.28%。其中,有2个QTL位点分布于第3染色体,2个QTL位点分布于第7染色体,其余8个QTL位点各自分布于不同染色体区段。12个QTL中有5个QTL与前人研究结果一致,其余7个QTL位点为本研究大豆苗期耐盐的新发现。
陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79.
CHEN Yi-bo, YANG Wan-ming, YUE Ai-qin, WANG Li-xiang, DU Wei-jun, WANG Min. Construction of Soybean Genetic Map Based on SLAF Markers and QTL Mapping Analysis of Salt Tolerance at Seedling Stage[J]. Biotechnology Bulletin, 2023, 39(2): 70-79.
NaCl浓度 NaCl concentration/(mmol·L-1) | 耐盐等级 Salt tolerance grade |
---|---|
130 | 0 |
160 | 1 |
190 | 2 |
200 | 3 |
210 | 4 |
220 | 5 |
230 | 6 |
240 | 7 |
250 | 8 |
260 | 9 |
270 | 10 |
280 | 11 |
290 | 12 |
300 | 13 |
310 | 14 |
320 | 15 |
表1 致死浓度与耐盐等级对照表
Table 1 Comparison between plant death concentration and salt tolerance grade
NaCl浓度 NaCl concentration/(mmol·L-1) | 耐盐等级 Salt tolerance grade |
---|---|
130 | 0 |
160 | 1 |
190 | 2 |
200 | 3 |
210 | 4 |
220 | 5 |
230 | 6 |
240 | 7 |
250 | 8 |
260 | 9 |
270 | 10 |
280 | 11 |
290 | 12 |
300 | 13 |
310 | 14 |
320 | 15 |
染色体 Chromosome | 染色体长度 Chromosome length/cM | 标记数 Number of markers | 平均图距 Average distance/cM | 最大Gap Max gap/cM | Gap长度<5 cM的比例 Proportion of those with gap<5 cM |
---|---|---|---|---|---|
1 | 152.35 | 57 | 2.67 | 16.24 | 0.88 |
2 | 208.45 | 577 | 0.36 | 9.13 | 1.00 |
3 | 121.27 | 68 | 1.78 | 9.17 | 0.94 |
4 | 132.43 | 528 | 0.25 | 9.45 | 0.99 |
5 | 164.72 | 499 | 0.33 | 3.34 | 1.00 |
6 | 163.35 | 404 | 0.40 | 9.44 | 1.00 |
7 | 208.22 | 366 | 0.57 | 7.31 | 0.98 |
8 | 176.81 | 580 | 0.30 | 9.87 | 0.99 |
9 | 146.00 | 414 | 0.35 | 17.92 | 0.99 |
10 | 144.33 | 608 | 0.24 | 23.12 | 1.00 |
11 | 119.15 | 105 | 1.13 | 8.12 | 0.97 |
12 | 149.87 | 545 | 0.27 | 25.26 | 1.00 |
13 | 138.98 | 274 | 0.51 | 15.38 | 0.98 |
14 | 174.33 | 120 | 1.45 | 16.63 | 0.96 |
15 | 149.64 | 616 | 0.24 | 8.19 | 1.00 |
16 | 92.51 | 28 | 3.30 | 16.15 | 0.85 |
17 | 193.28 | 214 | 0.90 | 6.87 | 0.99 |
18 | 196.48 | 740 | 0.27 | 27.09 | 0.99 |
19 | 106.30 | 534 | 0.20 | 9.76 | 0.99 |
20 | 209.99 | 668 | 0.31 | 28.45 | 0.98 |
表2 染色体标记信息
Table 2 Chromosome marker information
染色体 Chromosome | 染色体长度 Chromosome length/cM | 标记数 Number of markers | 平均图距 Average distance/cM | 最大Gap Max gap/cM | Gap长度<5 cM的比例 Proportion of those with gap<5 cM |
---|---|---|---|---|---|
1 | 152.35 | 57 | 2.67 | 16.24 | 0.88 |
2 | 208.45 | 577 | 0.36 | 9.13 | 1.00 |
3 | 121.27 | 68 | 1.78 | 9.17 | 0.94 |
4 | 132.43 | 528 | 0.25 | 9.45 | 0.99 |
5 | 164.72 | 499 | 0.33 | 3.34 | 1.00 |
6 | 163.35 | 404 | 0.40 | 9.44 | 1.00 |
7 | 208.22 | 366 | 0.57 | 7.31 | 0.98 |
8 | 176.81 | 580 | 0.30 | 9.87 | 0.99 |
9 | 146.00 | 414 | 0.35 | 17.92 | 0.99 |
10 | 144.33 | 608 | 0.24 | 23.12 | 1.00 |
11 | 119.15 | 105 | 1.13 | 8.12 | 0.97 |
12 | 149.87 | 545 | 0.27 | 25.26 | 1.00 |
13 | 138.98 | 274 | 0.51 | 15.38 | 0.98 |
14 | 174.33 | 120 | 1.45 | 16.63 | 0.96 |
15 | 149.64 | 616 | 0.24 | 8.19 | 1.00 |
16 | 92.51 | 28 | 3.30 | 16.15 | 0.85 |
17 | 193.28 | 214 | 0.90 | 6.87 | 0.99 |
18 | 196.48 | 740 | 0.27 | 27.09 | 0.99 |
19 | 106.30 | 534 | 0.20 | 9.76 | 0.99 |
20 | 209.99 | 668 | 0.31 | 28.45 | 0.98 |
性状 Trait | 亲本 Parents | 重组自交群体 RIL | |||||
---|---|---|---|---|---|---|---|
晋大53 Jinda 53 | 平南Pingnan | 显著性Significance | 均值±标准差Mean±SD | 变异系数CV/% | 偏度Skewness | 峰度Kurtosis | |
2021PDCⅠ | 15 | 3 | ** | 8.566 9±2.252 3 | 26.3 | 0.18 | -0.521 |
2021PDC II | 15 | 2 | ** | 8.480 2±2.687 3 | 31.6 | -0.089 | -0.019 |
2021PDCⅢ | 14 | 2 | ** | 7.790 3±2.235 2 | 28.7 | 0.053 | -0.105 |
2021PDCA | 15 | 3 | ** | 8.284 3±1.860 9 | 22.5 | 0.215 | 0.427 |
2020PDCⅠ | 14 | 2 | ** | 7.752 0±2.367 0 | 35.1 | 0.030 | -0.825 |
2020PDC II | 14 | 2 | ** | 8.291 3±1.975 4 | 31.4 | 0.060 | -0.762 |
2020PDCⅢ | 14 | 4 | ** | 7.610 2±1.518 2 | 22.9 | 0.211 | -0.609 |
2020PDCA | 14 | 3 | ** | 7.883 5±1.445 4 | 22.1 | 0.264 | -0.763 |
表3 RIL群体中苗期表型统计
Table 3 Phenotypic statistics of RIL population at seedling stage
性状 Trait | 亲本 Parents | 重组自交群体 RIL | |||||
---|---|---|---|---|---|---|---|
晋大53 Jinda 53 | 平南Pingnan | 显著性Significance | 均值±标准差Mean±SD | 变异系数CV/% | 偏度Skewness | 峰度Kurtosis | |
2021PDCⅠ | 15 | 3 | ** | 8.566 9±2.252 3 | 26.3 | 0.18 | -0.521 |
2021PDC II | 15 | 2 | ** | 8.480 2±2.687 3 | 31.6 | -0.089 | -0.019 |
2021PDCⅢ | 14 | 2 | ** | 7.790 3±2.235 2 | 28.7 | 0.053 | -0.105 |
2021PDCA | 15 | 3 | ** | 8.284 3±1.860 9 | 22.5 | 0.215 | 0.427 |
2020PDCⅠ | 14 | 2 | ** | 7.752 0±2.367 0 | 35.1 | 0.030 | -0.825 |
2020PDC II | 14 | 2 | ** | 8.291 3±1.975 4 | 31.4 | 0.060 | -0.762 |
2020PDCⅢ | 14 | 4 | ** | 7.610 2±1.518 2 | 22.9 | 0.211 | -0.609 |
2020PDCA | 14 | 3 | ** | 7.883 5±1.445 4 | 22.1 | 0.264 | -0.763 |
性状 Trait | 2021PDCⅠ | 2021PDC II | 2021PDCⅢ | 2021PDCA | 2020PDCⅠ | 2020PDC II | 2020PDCⅢ | 2020PDCA |
---|---|---|---|---|---|---|---|---|
2021PDCⅠ | 1 | |||||||
2021PDC II | 0.972 8** | 1 | ||||||
2021PDCⅢ | 0.821 9** | 0.999 8** | 1 | |||||
2021PDCA | 0.808 1** | 0.999 7** | 0.999 9** | 1 | ||||
2020PDCⅠ | 0.651** | 0.995 5** | 0.999 9** | 0.999 9** | 1 | |||
2020PDC II | 0.631 2** | 0.601 4** | 0.870 9** | 0.881 8** | 0.959 1** | 1 | ||
2020PDCⅢ | 0.591 7** | 0.656 2** | 0.664 5** | 0.681 8** | 0.832 1** | 0.999 9** | 1 | |
2020PDCA | 0.323 7** | 0.362 9** | 0.398 6** | 0.415 5** | 0.689 2** | 0.995 4** | 0.999 9** | 1 |
表4 耐盐性状的相关性分析
Table 4 Correlation analysis of salt tolerance traits
性状 Trait | 2021PDCⅠ | 2021PDC II | 2021PDCⅢ | 2021PDCA | 2020PDCⅠ | 2020PDC II | 2020PDCⅢ | 2020PDCA |
---|---|---|---|---|---|---|---|---|
2021PDCⅠ | 1 | |||||||
2021PDC II | 0.972 8** | 1 | ||||||
2021PDCⅢ | 0.821 9** | 0.999 8** | 1 | |||||
2021PDCA | 0.808 1** | 0.999 7** | 0.999 9** | 1 | ||||
2020PDCⅠ | 0.651** | 0.995 5** | 0.999 9** | 0.999 9** | 1 | |||
2020PDC II | 0.631 2** | 0.601 4** | 0.870 9** | 0.881 8** | 0.959 1** | 1 | ||
2020PDCⅢ | 0.591 7** | 0.656 2** | 0.664 5** | 0.681 8** | 0.832 1** | 0.999 9** | 1 | |
2020PDCA | 0.323 7** | 0.362 9** | 0.398 6** | 0.415 5** | 0.689 2** | 0.995 4** | 0.999 9** | 1 |
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 位置区间 Support interval/cM | 标记区间 Flanking marker | LOD | PVE/% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC11 | 11 | 18.19 | 13.77-28.04 | Marker1 810 382-Marker1 691 704 | 3.00 | 23.24 | -0.53 |
2021 | qPDC3-1 | 3 | 59.07 | 58.81-59.07 | Marker3 281 914-Marker3 338 677 | 2.71 | 23.24 | 0.58 |
2021 | qPDC9 | 9 | 78.64 | 73.04-78.64 | Marker878 031-Marker939 166 | 4.01 | 24.67 | 1.20 |
2021 | qPDC18 | 18 | 123.18 | 114.18-131.04 | Marker2 418 985-Marker2 227 148 | 3.47 | 38.28 | -1.35 |
2021 | qPDC20 | 20 | 68.49 | 56.82-77.07 | Marker174 668-Marker200 562 | 5.18 | 33.23 | 0.89 |
2020 | qPDC3-2 | 3 | 108.22 | 89.91-108.22 | Marker3 196 697-Marker3 277 492 | 3.04 | 31.22 | -0.72 |
2020 | qPDC15 | 15 | 76.14 | 72.32-76.14 | Marker1 156 747-Marker1 191 086 | 3.15 | 29.53 | 0.71 |
2020 | qPDC7-1 | 7 | 100.5 | 98.78-100.65 | Marker3 6283 86-Marker3 638 386 | 4.09 | 24.58 | 1.28 |
2021 | qPDC2 | 2 | 142.57 | 138.1-145.36 | Marker2 455 132-Marker2 619 422 | 2.96 | 34.19 | 0.42 |
2021 | qPDC5 | 5 | 156.33 | 148.08-163.45 | Marker471 588-Marker535 412 | 5.01 | 34.04 | -0.57 |
2020 | qPDC7-2 | 7 | 95.87 | 63.68-90.5 | Marker3 672 083-Marker3 638 386 | 4.73 | 31.84 | 0.97 |
2020 | qPDC13 | 13 | 3.01 | 0.01-5.01 | Marker3 430 788-satt659 | 2.89 | 34.02 | -0.44 |
表5 大豆苗期耐盐性状QTL分析
Table 5 Analysis of QTL associated with salt tolerance in soybean seedling
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 位置区间 Support interval/cM | 标记区间 Flanking marker | LOD | PVE/% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC11 | 11 | 18.19 | 13.77-28.04 | Marker1 810 382-Marker1 691 704 | 3.00 | 23.24 | -0.53 |
2021 | qPDC3-1 | 3 | 59.07 | 58.81-59.07 | Marker3 281 914-Marker3 338 677 | 2.71 | 23.24 | 0.58 |
2021 | qPDC9 | 9 | 78.64 | 73.04-78.64 | Marker878 031-Marker939 166 | 4.01 | 24.67 | 1.20 |
2021 | qPDC18 | 18 | 123.18 | 114.18-131.04 | Marker2 418 985-Marker2 227 148 | 3.47 | 38.28 | -1.35 |
2021 | qPDC20 | 20 | 68.49 | 56.82-77.07 | Marker174 668-Marker200 562 | 5.18 | 33.23 | 0.89 |
2020 | qPDC3-2 | 3 | 108.22 | 89.91-108.22 | Marker3 196 697-Marker3 277 492 | 3.04 | 31.22 | -0.72 |
2020 | qPDC15 | 15 | 76.14 | 72.32-76.14 | Marker1 156 747-Marker1 191 086 | 3.15 | 29.53 | 0.71 |
2020 | qPDC7-1 | 7 | 100.5 | 98.78-100.65 | Marker3 6283 86-Marker3 638 386 | 4.09 | 24.58 | 1.28 |
2021 | qPDC2 | 2 | 142.57 | 138.1-145.36 | Marker2 455 132-Marker2 619 422 | 2.96 | 34.19 | 0.42 |
2021 | qPDC5 | 5 | 156.33 | 148.08-163.45 | Marker471 588-Marker535 412 | 5.01 | 34.04 | -0.57 |
2020 | qPDC7-2 | 7 | 95.87 | 63.68-90.5 | Marker3 672 083-Marker3 638 386 | 4.73 | 31.84 | 0.97 |
2020 | qPDC13 | 13 | 3.01 | 0.01-5.01 | Marker3 430 788-satt659 | 2.89 | 34.02 | -0.44 |
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 标记 1 Marker 1 | 标记 2 Marker 2 | LOD | PVE /% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC20 | 20 | 68.49 | 174 668 | 200 562 | 5.18 | 33.23 | 0.89 |
表6 大豆苗期的上位性位点
Table 6 Epistatic loci of soybean at seedling stage
年份 Year | 性状 Trait | 染色体 Chromosome | 位置 Position/cM | 标记 1 Marker 1 | 标记 2 Marker 2 | LOD | PVE /% | 加性效应 Additive effector |
---|---|---|---|---|---|---|---|---|
2021 | qPDC20 | 20 | 68.49 | 174 668 | 200 562 | 5.18 | 33.23 | 0.89 |
[1] |
Chen HT, Liu XQ, Zhang HM, et al. Advances in salinity tolerance of soybean: genetic diversity, heredity, and gene identification contribute to improving salinity tolerance[J]. J Integr Agric, 2018, 17(10): 2215-2221.
doi: 10.1016/S2095-3119(17)61864-1 URL |
[2] | 胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述[J]. 陕西农业科学, 2015, 61(2): 67-71. |
Hu Y, Han JC, Zhang Y. Review of saline-alkali land improvement technology[J]. Shaanxi J Agric Sci, 2015, 61(2): 67-71. | |
[3] | 李彬, 王志春, 孙志高, 等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154-158. |
Li B, Wang ZC, Sun ZG, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agric Res Arid Areas, 2005, 23(2): 154-158. | |
[4] | 刘梅芳, 樊琦. 中国大豆消费、生产和进口现状及存在的问题[J]. 粮食科技与经济, 2021, 46(6): 28-35. |
Liu MF, Fan Q. Study on the current situation and problems of soybean consumption, production and import in China[J]. Grain Sci Technol Econ, 2021, 46(6): 28-35. | |
[5] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[6] | 刘铎, 丛日春, 党宏忠, 等. 柳树幼苗渗透调节物质对中、碱性钠盐响应的差异性[J]. 生态环境学报, 2014, 23(9): 1531-1535. |
Liu D, Cong RC, Dang HZ, et al. Comparative effects of salt and alkali stresses on plant physiology of willow[J]. Ecol Environ Sci, 2014, 23(9): 1531-1535. | |
[7] |
陈成升, 谢志霞, 刘小京. 渗盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化[J]. 植物研究, 2009, 29(6): 708-713.
doi: 10.7525/j.issn.1673-5102.2009.06.012 |
Chen CS, Xie ZX, Liu XJ. Dynamic transformation of the substances of osmotic adjustment in winter wheat under iso-osmotic salt and drought stresses[J]. Bull Bot Res, 2009, 29(6): 708-713. | |
[8] | Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield[J]. Plant Biol(Stuttg), 2019, 21(Suppl 1): 31-38. |
[9] |
Zhu JK. Plant salt stress[J]. Encyclopedia of Life Sciences(eLS), 2007. DOI: 10.1002/9780470015902.a0001300.pub2.
doi: 10.1002/9780470015902.a0001300.pub2 |
[10] |
Xu DH, Tuyen DD. Genetic studies on saline and sodic tolerances in soybean[J]. Breed Sci, 2012, 61(5): 559-565.
doi: 10.1270/jsbbs.61.559 URL |
[11] | 陈华涛, 陈新, 喻德跃, 等. 大豆耐盐基因定位及耐盐基因克隆研究进展[J]. 江苏农业科学, 2010, 38(5): 78-80. |
Chen HT, Chen X, Yu DY, et al. Research progress on localization and cloning of salt tolerance genes in soybean[J]. Jiangsu Agric Sci, 2010, 38(5): 78-80. | |
[12] |
Guan RX, Qu Y, Guo Y, et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3[J]. Plant J, 2014, 80(6): 937-950.
doi: 10.1111/tpj.12695 URL |
[13] | Zhang W, Liao XL, Cui YM, et al. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean[J]. PLoS Genet, 2019, 15(1): e1007798. |
[14] | 唐晓飞, 董兴月, 魏崃, 等. 转大豆Na+/H+逆向转运蛋白GmNHX1基因植株的获得[J]. 分子植物育种, 2016, 14(4): 904-909. |
Tang XF, Dong XY, Wei L, et al. Obtaining transgenic soybean plants with Na+/H+ antiporter(GmNHX1)[J]. Mol Plant Breed, 2016, 14(4): 904-909. | |
[15] |
Sun TJ, Fan L, Yang J, et al. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na+efflux rate and K+/Na+ ratio in Arabidopsis[J]. BMC Plant Biol, 2019, 19(1): 469.
doi: 10.1186/s12870-019-2084-4 URL |
[16] |
Zhao XF, Wei PP, Liu Z, et al. Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress[J]. Acta Physiol Plant, 2016, 39(1): 1-11.
doi: 10.1007/s11738-016-2300-x URL |
[17] | Wei PP, Wang LC, Liu AL, et al. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean[J]. Front Plant Sci, 2016, 7: 1082. |
[18] |
Chen HT, Chen X, Gu HP, et al. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants[J]. Plant Growth Regul, 2014, 73(3): 299-308.
doi: 10.1007/s10725-014-9890-3 URL |
[19] |
Liao Y, Zou HF, Wang HW, et al. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J]. Cell Res, 2008, 18(10): 1047-1060.
doi: 10.1038/cr.2008.280 URL |
[20] |
Wang F, Chen HW, Li QT, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. Plant J, 2015, 83(2): 224-236.
doi: 10.1111/tpj.12879 URL |
[21] |
Liao Y, Zou HF, Wei W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta, 2008, 228(2): 225-240.
doi: 10.1007/s00425-008-0731-3 URL |
[22] |
Zhang GY, Chen M, Li LC, et al. Overexpression of the soybean GmERF3gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. J Exp Bot, 2009, 60(13): 3781-3796.
doi: 10.1093/jxb/erp214 URL |
[23] |
Pinheiro GL, Marques CS, Costa MDBL, et al. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response[J]. Gene, 2009, 444(1/2): 10-23.
doi: 10.1016/j.gene.2009.05.012 URL |
[24] |
Sun XW, Liu DY, Zhang XF, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3): e58700.
doi: 10.1371/journal.pone.0058700 URL |
[25] |
Liu DY, Ma CX, Hong WG, et al. Construction and analysis of high-density linkage map using high-throughput sequencing data[J]. PLoS One, 2014, 9(6): e98855.
doi: 10.1371/journal.pone.0098855 URL |
[26] | 王聪, 朱月林, 杨立飞, 等. 菜用大豆耐盐品种的筛选及其耐盐生理特性[J]. 江苏农业学报, 2009, 25(3): 621-627. |
Wang C, Zhu YL, Yang LF, et al. Screening of vegetable soybean cultivars for salt tolerance and their physiological characteristics[J]. Jiangsu J Agric Sci, 2009, 25(3): 621-627. | |
[27] | McCouch SR, Cho YG, Yano M, et al. Report on QTL nomenclature[J]. Rice Genet Newsl, 1997, 14: 11-13. |
[28] | 张威, 廖锡良, 喻德跃, 等. 大豆耐盐性研究进展[J]. 土壤与作物, 2018, 7(3): 284-292. |
Zhang W, Liao XL, Yu DY, et al. A review of salt tolerance in soybean(Glycine max(L.)Merill)[J]. Soils Crops, 2018, 7(3): 284-292. | |
[29] | Lee GJ, Carter TE, Villagarcia MR, et al. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars[J]. TAG Theor Appl Genet Theor Und Angewandte Genet, 2004, 109(8): 1610-1619. |
[30] |
Hamwieh A, Tuyen DD, Cong H, et al. Identification and validation of a major QTL for salt tolerance in soybean[J]. Euphytica, 2011, 179(3): 451-459.
doi: 10.1007/s10681-011-0347-8 URL |
[31] |
Chen HT, Cui SY, Fu SX, et al. Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean(Glycine max L.)[J]. Aust J Agric Res, 2008, 59(12): 1086.
doi: 10.1071/AR08104 URL |
[32] |
Ha BK, Vuong TD, Velusamy V, et al. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean(Glycine soja)PI 483463[J]. Euphytica, 2013, 193(1): 79-88.
doi: 10.1007/s10681-013-0944-9 URL |
[33] | 杨燕. 大豆幼苗期耐盐QTL的定位及候选基因的克隆[D]. 南京: 南京农业大学, 2013. |
Yang Y. Mapping QTL conferring salt tolerance at seedling stage and cloning of candidate genes in soybean[D]. Nanjing: Nanjing Agricultural University, 2013. | |
[34] | 方义生, 曹东, 杨红丽, 等. 大豆耐盐相关基因研究进展[J]. 中国油料作物学报, 2020, 42(4): 512-526. |
Fang YS, Cao D, Yang HL, et al. Research progress of salt-tolerance genes in soybean[J]. Chin J Oil Crop Sci, 2020, 42(4): 512-526. | |
[35] | 闫玮雯. 大豆耐盐QTL定位及耐盐相关基因克隆[D]. 秦皇岛: 河北科技师范学院, 2012. |
Yan WW. QTL mapping and related gene cloning for salt tolerance in soybean[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2012. | |
[36] |
Kan GZ, Zhang W, Yang WM, et al. Association mapping of soybean seed germination under salt stress[J]. Mol Genet Genomics, 2015, 290(6): 2147-2162.
doi: 10.1007/s00438-015-1066-y pmid: 26001372 |
[37] |
Do TD, Vuong TD, Dunn D, et al. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III[J]. Theor Appl Genet, 2018, 131(3): 513-524.
doi: 10.1007/s00122-017-3015-0 pmid: 29151146 |
[38] | 刘谢香. 大豆苗期耐盐基因GmSALT3标记开发利用及出苗期耐盐QTL发掘[D]. 北京: 中国农业科学院, 2019. |
Liu XX. Marker development and utilization of salt tolerance gene GmSALT3 at seedling stage and QTL mapping for salt tolerance at emergence stage in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
[1] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[2] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[3] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[4] | 徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位[J]. 生物技术通报, 2023, 39(7): 185-194. |
[5] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[6] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[7] | 李月, 余婉贤, 李宁, 姚明华, 李峰, 邓颖天. 辣椒苗期炭疽菌接种方法[J]. 生物技术通报, 2023, 39(4): 221-226. |
[8] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
[9] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[10] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[11] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
[12] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[13] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[14] | 黄婧, 朱亮, 薛蓬勃, 付强. 水稻叶和籽粒镉积累机制及QTL定位研究[J]. 生物技术通报, 2022, 38(8): 118-126. |
[15] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||