生物技术通报 ›› 2023, Vol. 39 ›› Issue (4): 49-58.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1163
周晓杰1,2(), 杨思琪1,2, 张译文3, 徐佳琪4, 杨晟1()
收稿日期:
2022-09-21
出版日期:
2023-04-26
发布日期:
2023-05-16
通讯作者:
杨晟,男,博士,研究员,研究方向:微生物分子遗传与合成生物学;E-mail: syang@sibs.ac.cn作者简介:
周晓杰,女,硕士研究生,研究方向:基因组编辑;E-mail: zhouxiaojie@cemps.ac.cn
基金资助:
ZHOU Xiao-jie1,2(), YANG Si-qi1,2, ZHANG Yi-wen3, XU Jia-qi4, YANG Sheng1()
Received:
2022-09-21
Published:
2023-04-26
Online:
2023-05-16
摘要:
CRISPR-Cas能够在RNA引导下靶向DNA或RNA的特定序列,改变RNA序列即可改变靶向位点,利用这一可重编程特性已开发出了各种强大的遗传学工具。最近发现CRISPR元件在进化过程中被Tn7转座子劫持,由此衍生出的CRISPR相关转座酶(CRISPR-associated transposases, CASTs)系统具有RNA引导DNA整合的能力,被部署为靶点可重编程的基因组整合工具,在大片段和多重基因整合上具有广阔的应用前景。本文追溯了CASTs的发现历程,总结了不同类型CASTs的基因座结构特点、介导基因整合的机制模型以及其在多种革兰氏阴性细菌中的部署和应用。
周晓杰, 杨思琪, 张译文, 徐佳琪, 杨晟. CRISPR相关转座酶及其细菌基因组编辑应用[J]. 生物技术通报, 2023, 39(4): 49-58.
ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing[J]. Biotechnology Bulletin, 2023, 39(4): 49-58.
亚型 Subtype | 缩写或转座子编号 Abbreviation or transposon No. | 来源 Source | 底盘 Chassis | 最高效率 Highest efficiency | 参考文献 Reference |
---|---|---|---|---|---|
I-F | VchCAST | Vibrio cholerae Tn6677 | Escherichia coli | ~100% | [ |
Tatumella citrea | ~100% | [ | |||
Klebsiella oxytoca | N.D.* | [ | |||
Pseudomonas putida | N.D.* | [ | |||
Klebsiella michiganensis | ~0.010 | [ | |||
Pseudomonas simiae | ~0.003 | [ | |||
Ralstonia sp. UNC404CL21Col | ~0.001 | [ | |||
PtrCAST | Pseudoalteromonas translucida KMM520 | Escherichia coli | ~100% | [ | |
AsaCAST | Aeromonas salmonicidaS44 | Escherichia coli | 33.4% **&*** | [ | |
Tn7000 | Vibrio cholerae 4874 | Escherichia coli | ~1% | [ | |
Tn7001 | Photobactenium iliopiscarium NCIMB 13355 | Escherichia coli | ~1% | [ | |
Tn7002 | Vibrio sp.F12 | Escherichia coli | ~0.2% | [ | |
Tn7003 | Vibrnio parahaemolyticusFORC 071 | Escherichia coli | ~2% | [ | |
Tn7004 | Vibrio sp.16 | Escherichia coli | ~0.05% | [ | |
Tn7005 | Vibrio cholerae M1517 | Escherichia coli | ~45% | [ | |
Tn7006 | Vibrio splendidus UCD-SED10 | Escherichia coli | ~0.4% | [ | |
Tn7007 | Alivibrio wodanis06/09/160 | Escherichia coli | ~40% | [ | |
Tn7008 | Alivibrio sp.1S175 | Escherichia coli | ~0.13% | [ | |
Tn7009 | Parashewanella spongiaeHJ039 | Escherichia coli | ~50% | [ | |
Tn7010 | Photobacterium ganghwense JCM 12487 | Escherichia coli | ~0.4% | [ | |
Tn7011 | Pseudoalteromonas sp.P1-25 | Escherichia coli | ~48% | [ | |
Tn7012 | Pseudoalteromonas ruthenica S3245 | Escherichia coli | ~5% | [ | |
Tn7013 | Vibrio cholerae OYP7G04 | Escherichia coli | ~0.1% | [ | |
Tn7014 | Vibnio diazotrophicus60.6F | Escherichia coli | ~30% | [ | |
Tn7015 | Shewanella sp.UCD-KL21 | Escherichia coli | ~6% | [ | |
Tn7016 | Pseudoalteromonassp.S983 | Escherichia coli | ~80% | [ | |
Tn7017 | Endozoicomonas ascidicolaAVMARTO5 | Escherichia coli | ~16% | [ | |
I-B | AvCAST | Anabaena variabilis | Escherichia coli | 2.50% | [ |
PmcCAST | Peltigera membranacea cyanobiont 210A | Escherichia coli | 0.85% | [ | |
RoCAST | Rippkaea orientalis | Escherichia coli | N.D.* | [ | |
V-K | ShCAST | Scytonema hofmanni | Escherichia coli | 80% | [ |
Sinorhizobium meliloti | ~100% | [ | |||
Shewanella oneidensis MR-1 | 100% | [ | |||
Burkholderia thailandensis | ~100% ** | [ | |||
Pseudomonas putida | ~100% ** | [ | |||
Agrobacterium fabrum Anabaena | 40% ** N.D.* | [ [ | |||
ShoCAST | Scytonema hofmannii PCC 7110 | Escherichia coli | 40% | [ | |
AcCAST | Anabaena cylindrica | / | N.D.* | [ | |
ShHELIX | Scytonema hofmanni | Escherichia coli | ~80% | [ | |
ShoHELIX | Scytonema hofmannii PCC 7110 | Escherichia coli | ~50% | [ | |
AcHELIX | Anabaena cylindrica | Escherichia coli | ~90% | [ |
表1 不同亚型CASTs在细菌中的部署
Table 1 Implementation of different subtype CASTs in bacteria
亚型 Subtype | 缩写或转座子编号 Abbreviation or transposon No. | 来源 Source | 底盘 Chassis | 最高效率 Highest efficiency | 参考文献 Reference |
---|---|---|---|---|---|
I-F | VchCAST | Vibrio cholerae Tn6677 | Escherichia coli | ~100% | [ |
Tatumella citrea | ~100% | [ | |||
Klebsiella oxytoca | N.D.* | [ | |||
Pseudomonas putida | N.D.* | [ | |||
Klebsiella michiganensis | ~0.010 | [ | |||
Pseudomonas simiae | ~0.003 | [ | |||
Ralstonia sp. UNC404CL21Col | ~0.001 | [ | |||
PtrCAST | Pseudoalteromonas translucida KMM520 | Escherichia coli | ~100% | [ | |
AsaCAST | Aeromonas salmonicidaS44 | Escherichia coli | 33.4% **&*** | [ | |
Tn7000 | Vibrio cholerae 4874 | Escherichia coli | ~1% | [ | |
Tn7001 | Photobactenium iliopiscarium NCIMB 13355 | Escherichia coli | ~1% | [ | |
Tn7002 | Vibrio sp.F12 | Escherichia coli | ~0.2% | [ | |
Tn7003 | Vibrnio parahaemolyticusFORC 071 | Escherichia coli | ~2% | [ | |
Tn7004 | Vibrio sp.16 | Escherichia coli | ~0.05% | [ | |
Tn7005 | Vibrio cholerae M1517 | Escherichia coli | ~45% | [ | |
Tn7006 | Vibrio splendidus UCD-SED10 | Escherichia coli | ~0.4% | [ | |
Tn7007 | Alivibrio wodanis06/09/160 | Escherichia coli | ~40% | [ | |
Tn7008 | Alivibrio sp.1S175 | Escherichia coli | ~0.13% | [ | |
Tn7009 | Parashewanella spongiaeHJ039 | Escherichia coli | ~50% | [ | |
Tn7010 | Photobacterium ganghwense JCM 12487 | Escherichia coli | ~0.4% | [ | |
Tn7011 | Pseudoalteromonas sp.P1-25 | Escherichia coli | ~48% | [ | |
Tn7012 | Pseudoalteromonas ruthenica S3245 | Escherichia coli | ~5% | [ | |
Tn7013 | Vibrio cholerae OYP7G04 | Escherichia coli | ~0.1% | [ | |
Tn7014 | Vibnio diazotrophicus60.6F | Escherichia coli | ~30% | [ | |
Tn7015 | Shewanella sp.UCD-KL21 | Escherichia coli | ~6% | [ | |
Tn7016 | Pseudoalteromonassp.S983 | Escherichia coli | ~80% | [ | |
Tn7017 | Endozoicomonas ascidicolaAVMARTO5 | Escherichia coli | ~16% | [ | |
I-B | AvCAST | Anabaena variabilis | Escherichia coli | 2.50% | [ |
PmcCAST | Peltigera membranacea cyanobiont 210A | Escherichia coli | 0.85% | [ | |
RoCAST | Rippkaea orientalis | Escherichia coli | N.D.* | [ | |
V-K | ShCAST | Scytonema hofmanni | Escherichia coli | 80% | [ |
Sinorhizobium meliloti | ~100% | [ | |||
Shewanella oneidensis MR-1 | 100% | [ | |||
Burkholderia thailandensis | ~100% ** | [ | |||
Pseudomonas putida | ~100% ** | [ | |||
Agrobacterium fabrum Anabaena | 40% ** N.D.* | [ [ | |||
ShoCAST | Scytonema hofmannii PCC 7110 | Escherichia coli | 40% | [ | |
AcCAST | Anabaena cylindrica | / | N.D.* | [ | |
ShHELIX | Scytonema hofmanni | Escherichia coli | ~80% | [ | |
ShoHELIX | Scytonema hofmannii PCC 7110 | Escherichia coli | ~50% | [ | |
AcHELIX | Anabaena cylindrica | Escherichia coli | ~90% | [ |
图4 MUCICAT的原理(A)及其在酶剂量优化(B)和代谢工程菌株改造(C)上的应用
Fig. 4 Mechanism of MUCICAT(A)and its application of enzyme dosage optimization(B)and modification(C)of metabolically engineered strain
[1] |
Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722-736.
doi: 10.1038/nrmicro3569 pmid: 26411297 |
[2] |
Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli[J]. Nucleic Acids Res, 2012, 40(12): 5569-5576.
doi: 10.1093/nar/gks216 pmid: 22402487 |
[3] |
Carte J, Wang RY, Li H, et al. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes[J]. Genes Dev, 2008, 22(24): 3489-3496.
doi: 10.1101/gad.1742908 URL |
[4] | Swarts DC, Mosterd C, et al. CRISPR interference directs strand specific spacer acquisition[J]. PLoS One, 2012, 7(4): e35888. |
[5] |
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573.
doi: 10.1126/science.aaf5573 URL |
[6] |
Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033 pmid: 23287722 |
[7] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249 |
[8] |
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548 |
[9] |
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588.
doi: 10.1038/nature14136 |
[10] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 23452860 |
[11] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
doi: 10.1038/nature17946 |
[12] |
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-cas13[J]. Science, 2017, 358(6366): 1019-1027.
doi: 10.1126/science.aaq0180 pmid: 29070703 |
[13] |
East-Seletsky A, O' Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624): 270-273.
doi: 10.1038/nature19802 |
[14] |
Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
doi: 10.1126/science.aar6245 pmid: 29449511 |
[15] |
Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria[J]. Biotechnol Bioeng, 2016, 113(5): 930-943.
doi: 10.1002/bit.25851 pmid: 26460902 |
[16] |
Hickman AB, Dyda F. DNA transposition at work[J]. Chem Rev, 2016, 116(20): 12758-12784.
doi: 10.1021/acs.chemrev.6b00003 pmid: 27187082 |
[17] |
Ravindran S. Barbara McClintock and the discovery of jumping genes[J]. Proc Natl Acad Sci USA, 2012, 109(50): 20198-20199.
doi: 10.1073/pnas.1219372109 pmid: 23236127 |
[18] |
Fedoroff NV. The discovery and characterization of transposable elements. The collected papers of Barbara McClintock[J]. Cell, 1988, 53(1): 9-10.
doi: 10.1016/0092-8674(88)90481-3 URL |
[19] |
Kapitonov VV, Jurka J. Rolling-circle transposons in eukaryotes[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8714-8719.
doi: 10.1073/pnas.151269298 pmid: 11447285 |
[20] |
Kapitonov VV, Jurka J. Self-synthesizing DNA transposons in eukaryotes[J]. Proc Natl Acad Sci USA, 2006, 103(12): 4540-4545.
doi: 10.1073/pnas.0600833103 pmid: 16537396 |
[21] |
Craig NL. Tn7: a target site-specific transposon[J]. Mol Microbiol, 1991, 5(11): 2569-2573.
pmid: 1664019 |
[22] |
Koch B, Jensen LE, Nybroe O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site[J]. J Microbiol Methods, 2001, 45(3): 187-195.
doi: 10.1016/s0167-7012(01)00246-9 pmid: 11348676 |
[23] | Peters JE, Craig NL. Tn7: smarter than we thought[J]. Nat Rev Mol Cell Biol, 2001, 2(11): 806-814. |
[24] |
Kaczmarska Z, Czarnocki-Cieciura M, Górecka-Minakowska KM, et al. Structural basis of transposon end recognition explains central features of Tn7 transposition systems[J]. Mol Cell, 2022, 82(14): 2618-2632.e7.
doi: 10.1016/j.molcel.2022.05.005 pmid: 35654042 |
[25] |
Morero NR, Zuliani C, Kumar B, et al. Targeting IS608 transposon integration to highly specific sequences by structure-based transposon engineering[J]. Nucleic Acids Res, 2018, 46(8): 4152-4163.
doi: 10.1093/nar/gky235 pmid: 29635476 |
[26] | Peters JE, Makarova KS, Shmakov S, et al. Recruitment of CRISPR-Cas systems by Tn7-like transposons[J]. Proc Natl Acad Sci USA, 2017, 114(35): E7358-E7366. |
[27] |
Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448): 48-53.
doi: 10.1126/science.aax9181 pmid: 31171706 |
[28] |
Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764): 219-225.
doi: 10.1038/s41586-019-1323-z |
[29] |
Ma W, Xu YS, Sun XM, et al. Transposon-associated CRISPR-cas system: a powerful DNA insertion tool[J]. Trends Microbiol, 2021, 29(7): 565-568.
doi: 10.1016/j.tim.2021.01.017 pmid: 33612399 |
[30] |
Faure G, Shmakov SA, Yan WX, et al. CRISPR-Cas in mobile genetic elements: counter-defence and beyond[J]. Nat Rev Microbiol, 2019, 17(8): 513-525.
doi: 10.1038/s41579-019-0204-7 pmid: 31165781 |
[31] |
Gleditzsch D, Müller-Esparza H, Pausch P, et al. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system[J]. Nucleic Acids Res, 2016, 44(12): 5872-5882.
doi: 10.1093/nar/gkw469 pmid: 27216815 |
[32] |
Krupovic M, Makarova KS, Forterre P, et al. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity[J]. BMC Biol, 2014, 12: 36.
doi: 10.1186/1741-7007-12-36 pmid: 24884953 |
[33] |
Rybarski JR, Hu K, Hill AM, et al. Metagenomic discovery of CRISPR-associated transposons[J]. Proc Natl Acad Sci USA, 2021, 118(49): e2112279118.
doi: 10.1073/pnas.2112279118 URL |
[34] |
Yang SQ, Zhang YW, Xu JQ, et al. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration[J]. Nucleic Acids Res, 2021, 49(17): 10192-10202.
doi: 10.1093/nar/gkab752 pmid: 34478496 |
[35] |
Petassi MT, Hsieh SC, Peters JE. Guide RNA categorization enables target site choice in Tn7-CRISPR-cas transposons[J]. Cell, 2020, 183(7): 1757-1771.e18.
doi: 10.1016/j.cell.2020.11.005 pmid: 33271061 |
[36] |
Klompe SE, Jaber N, Beh LY, et al. Evolutionary and mechanistic diversity of type I-F CRISPR-associated transposons[J]. Mol Cell, 2022, 82(3): 616-628.e5.
doi: 10.1016/j.molcel.2021.12.021 pmid: 35051352 |
[37] |
Saito M, Ladha A, Strecker J, et al. Dual modes of CRISPR-associated transposon homing[J]. Cell, 2021, 184(9): 2441-2453.e18.
doi: 10.1016/j.cell.2021.03.006 pmid: 33770501 |
[38] |
Wimmer F, Mougiakos I, Englert F, et al. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons[J]. Mol Cell, 2022, 82(6): 1210-1224.e6.
doi: 10.1016/j.molcel.2022.01.026 pmid: 35216669 |
[39] |
Özcan A, Pausch P, Linden A, et al. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum[J]. Nat Microbiol, 2019, 4(1): 89-96.
doi: 10.1038/s41564-018-0274-8 |
[40] |
Vo PLH, Acree C, Smith ML, et al. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing[J]. Mob DNA, 2021, 12(1): 13.
doi: 10.1186/s13100-021-00242-2 |
[41] |
Vo PLH, Ronda C, Klompe SE, et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering[J]. Nat Biotechnol, 2021, 39(4): 480-489.
doi: 10.1038/s41587-020-00745-y pmid: 33230293 |
[42] |
Park JU, Tsai AWL, Chen TH, et al. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM[J]. Proc Natl Acad Sci USA, 2022, 119(32): e2202590119.
doi: 10.1073/pnas.2202590119 URL |
[43] |
Park JU, Tsai AWL, Mehrotra E, et al. Structural basis for target site selection in RNA-guided DNA transposition systems[J]. Science, 2021, 373(6556): 768-774.
doi: 10.1126/science.abi8976 URL |
[44] |
Querques I, Schmitz M, Oberli S, et al. Target site selection and remodelling by type V CRISPR-transposon systems[J]. Nature, 2021, 599(7885): 497-502.
doi: 10.1038/s41586-021-04030-z |
[45] |
Park JU, Tsai AWL, Rizo AN, et al. Structures of the holo CRISPR RNA-guided transposon integration complex[J]. bioRxiv, 2022, DOI:10.1101/2022.10.12.511933.
doi: 10.1101/2022.10.12.511933 |
[46] |
Schmitz M, Querques I, Oberli S, et al. Structural basis for RNA-mediated assembly of type V CRISPR-associated transposons[J]. bioRxiv, 2022. DOI:10.1101/2022.06.17.496590.
doi: 10.1101/2022.06.17.496590 |
[47] |
Jia N, Xie W, de la Cruz MJ, et al. Structure-function insights into the initial step of DNA integration by a CRISPR-Cas-Transposon complex[J]. Cell Res, 2020, 30(2): 182-184.
doi: 10.1038/s41422-019-0272-2 pmid: 31925391 |
[48] |
Wang BB, Xu WH, Yang H. Structural basis of a Tn7-like transposase recruitment and DNA loading to CRISPR-Cas surveillance complex[J]. Cell Res, 2020, 30(2): 185-187.
doi: 10.1038/s41422-020-0274-0 pmid: 31913359 |
[49] |
Li Z, Zhang H, Xiao RJ, et al. Cryo-EM structure of a type I-F CRISPR RNA guided surveillance complex bound to transposition protein TniQ[J]. Cell Res, 2020, 30(2): 179-181.
doi: 10.1038/s41422-019-0268-y pmid: 31900425 |
[50] |
Halpin-Healy TS, Klompe SE, Sternberg SH, et al. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system[J]. Nature, 2020, 577(7789): 271-274.
doi: 10.1038/s41586-019-1849-0 |
[51] |
Hoffmann FT, Kim M, Beh LY, et al. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition[J]. Nature, 2022, 609(7926): 384-393.
doi: 10.1038/s41586-022-05059-4 |
[52] |
Yang JJ, Yang JW, Zhang YW, et al. CRISPR-associated transposase system can insert multiple copies of donor DNA into the same target locus[J]. CRISPR J, 2021, 4(6): 789-798.
doi: 10.1089/crispr.2021.0019 pmid: 34847728 |
[53] |
Jiang Y, Chen B, Duan CL, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Appl Environ Microbiol, 2015, 81(7): 2506-2514.
doi: 10.1128/AEM.04023-14 URL |
[54] | Feng X, Zhao DD, Zhang XL, et al. CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli[J]. Biotechnol J, 2018, 13(9): e1700604. |
[55] |
Bhatt S, Chalmers R. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein[J]. Nucleic Acids Res, 2019, 47(15): 8126-8135.
doi: 10.1093/nar/gkz552 URL |
[56] |
Chen SP, Wang HH. An engineered cas-transposon system for programmable and site-directed DNA transpositions[J]. CRISPR J, 2019, 2(6): 376-394.
doi: 10.1089/crispr.2019.0030 pmid: 31742433 |
[57] |
Wang G, Yang LH, Grishin D, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies[J]. Nat Protoc, 2017, 12(1): 88-103.
doi: 10.1038/nprot.2016.152 pmid: 27929521 |
[58] |
Ma SF, Wang XL, Hu YF, et al. Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain[J]. Nucleic Acids Res, 2020, 48(18): 10590-10601.
doi: 10.1093/nar/gkaa779 pmid: 32986839 |
[59] |
Tou CJ, Orr B, Kleinstiver BP. Cut-and-paste DNA insertion with engineered type V-K CRISPR-associated transposases[J]. bioRxiv, 2022. DOI:10.1101/2022.01.07.475005.
doi: 10.1101/2022.01.07.475005 |
[60] |
Zhang YW, Sun XM, Wang QZ, et al. Multicopy chromosomal integration using CRISPR-associated transposases[J]. ACS Synth Biol, 2020, 9(8): 1998-2008.
doi: 10.1021/acssynbio.0c00073 pmid: 32551502 |
[61] |
Cheng ZH, Wu J, Liu JQ, et al. Repurposing CRISPR RNA-guided integrases system for one-step, efficient genomic integration of ultra-long DNA sequences[J]. Nucleic Acids Res, 2022, 50(13): 7739-7750.
doi: 10.1093/nar/gkac554 URL |
[62] |
Cui YL, Dong HN, Tong BS, et al. A versatile Cas12k-based genetic engineering toolkit(C12KGET)for metabolic engineering in genetic manipulation-deprived strains[J]. Nucleic Acids Res, 2022, 50(15): 8961-8973.
doi: 10.1093/nar/gkac655 URL |
[63] |
Rodríguez LT, Ellington AJ, Reisch CR. Broad-host-range mutagenesis with CRISPR-associated transposase[J]. bioRxiv, 2022. DOI:10.1101/2022.01.19.475551.
doi: 10.1101/2022.01.19.475551 |
[64] |
Arévalo S, Rico DP, Abarca MD, et al. Towards genome-engineering in complex cyanobacterial communities: RNA-guided transposition in Anabaena[J]. bioRxiv, 2022. DOI: 10.1101/2022.09.18.508393.
doi: 10.1101/2022.09.18.508393 |
[65] |
Rubin BE, Diamond S, Cress BF, et al. Species- and site-specific genome editing in complex bacterial communities[J]. Nat Microbiol, 2022, 7(1): 34-47.
doi: 10.1038/s41564-021-01014-7 |
[66] |
Zhang YW, Yang JW, Yang SQ, et al. Programming cells by multicopy chromosomal integration using CRISPR-associated transposases[J]. CRISPR J, 2021, 4(3): 350-359.
doi: 10.1089/crispr.2021.0018 pmid: 34152213 |
[1] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[2] | 刘笑天, 仇昊, 田莉, 任昂, 赵明文. CRISPR/Cas9基因编辑系统在食药用真菌中的研究进展[J]. 生物技术通报, 2021, 37(11): 4-13. |
[3] | 叶明旺, 李灿辉, 龚明. 基因组编辑技术在马铃薯精准分子育种中的应用及研究展望[J]. 生物技术通报, 2020, 36(3): 9-17. |
[4] | 周岩, 郭嘉, 胡玉锋, 魏健, 李毅丹. 稻香相关基因OsBADH2在“吉粳88”中的基因编辑研究[J]. 生物技术通报, 2020, 36(3): 88-94. |
[5] | 乔龙亮,庞建虎,党晨阳,黄海龙,朱鹏. CRISPR/Cas9基因组编辑技术及其在链霉菌中的应用[J]. 生物技术通报, 2018, 34(5): 32-40. |
[6] | 姚恒, 杨大海, 白戈, 谢贺. 利用CRISPR/Cas9技术定点敲除烟草多酚氧化酶基因NtPPO1[J]. 生物技术通报, 2018, 34(11): 97-102. |
[7] | 殷朝敏, 范秀芝, 史徳芳, 高虹. CRISPR/Cas基因编辑技术及其在真菌中的应用[J]. 生物技术通报, 2017, 33(3): 58-65. |
[8] | 刘妮, 陆沁, 刘娟, 陈航. CRISPR/Cas系统最新研究进展[J]. 生物技术通报, 2017, 33(2): 53-58. |
[9] | 杨菊, 邓禹. 合成生物学的关键技术及应用[J]. 生物技术通报, 2017, 33(1): 12-23. |
[10] | 张凯丽, 李瑞, 胡桐桐, 徐永杰. CRISPR/Cas9技术的发展及在基因组编辑中的应用[J]. 生物技术通报, 2016, 32(5): 47-60. |
[11] | 李炜杰, 杨娇, 何高明, 王立民, 皮文辉, 周平. 三种检测内源性基因修饰方法比较[J]. 生物技术通报, 2016, 32(2): 76-83. |
[12] | 李丹, 高海军. 多元自动化基因组工程[J]. 生物技术通报, 2015, 31(6): 60-66. |
[13] | 程曦,王文义,邱金龙. 基因组编辑:植物生物技术的机遇与挑战[J]. 生物技术通报, 2015, 31(4): 25-33. |
[14] | 吕永坤,堵国成,陈坚,周景文. 合成生物学技术研究进展[J]. 生物技术通报, 2015, 31(4): 134-148. |
[15] | 袁梦,何志旭,舒莉萍,袁家侃,刘丰,李燕. 基于CRISPR/Cas9系统对斑马鱼hoxb4基因的编辑及其突变体基因型的初筛[J]. 生物技术通报, 2015, 31(10): 249-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||