[1] Hur H, Lee JY, Yun HJ, et al. Analysis of HOX gene expression patterns in human breast cancer[J]. Springer Molecular Biotechnology, 2013, 56:64-71.
[2] Miyake N, Brun AC, Magnusson M, et al. HOXB4-induced selfrenewal of hematopoietic stem cells is significantly enhanced by p21 deficiency[J]. Stem Cells, 2006, 24:653-661.
[3]Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning[J]. Nat Rev Genet, 2005, 12:
893-904.
[4] Shahn, Sukumar S. The Hoxgenes and the irrolesin oncogenesis[J]. Nature , 2010, 10(10):361-370.
[5] Zhang XB, Schwartz JL, Humphries RK, Kiem HP . Effects of HOXB4 overexpression on ex vivo expansion and immortalization of hematopoietic cells from different species[J]. Stem Cells, 2007, 25:2074-2081.
[6]DiCarlo JE, Norwille JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic
Acids Res, 2013, 41(7):4336-4343.
[7]Chang NN, Sun CH, Gao L, Zhu D, et al. Genome editing with RNAguided Cas9 nucleasein zebrafish embryos[J]. Cell Res, 2013, 23
(4):465-472.
[8]Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826.
[9]Gratz SJ, Cummings AM, Nguyen JN, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease[J].
Genetics, 2013, 194(4):1029-1035.
[10]Friedland AE, Tzur YB, Esvelt KM, et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system [J]. Nat Methods, 2013,
10(8):741-743.
[11]Shan QW, Wang Y Li J, Zhang Chen KL, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat
Biotechnol, 2013, 31(8):686-688.
[12]Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J].
Genetics, 2002, 161(3):1169-1175.
[13] Dreier B, Fuller RP, Segal DJ, et al. Development of zinfinger domains for recognition of the 5’-CNN-3 family DNA sequences
and their use in the construction of artificial transcrirltion factors [J]. J Biol Chem, 2005, 280(42):5588-5597.
[14]Hockemeyer D, Wang HY, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases[J]. Nat
Biotechnol, 2011, 29(8):731-734.
[15]Huang P, Xiao A, Zhou MG, et al. Heritable gene targeting in zebrafish using customized TALENS[J]. Nat Biotechnol, 2011,
29(8):699-700.
[16] Gaj T, Gersbach CA, Barbas CF 3rd, et al. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Cell, 2013, 1073:1-9.
[17] Hwang W Y, Fu YF, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nat Biotechnol, 2013,(3):227-229.
[18]Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 6121:823-826.
[19]Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 6121:819-823.
[20] Ding Q, Regan SN, Xia Y, et al. Enhanced Efficiency of human pluripotent stem cell genome editing through replacing TALENs with RISPRs[J]. Cell, 2013, 12:393-394.
[21]Ramalingam S, Annaluru N, et al. A CRISPR way to engineer the human genome[J]. Genome Biol, 2013, 14(2):107-110.
[22] Sander JD, Joung JK . CRISPR -Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 1-9.
[23] González F, Zhu ZR, Shi ZD, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells[J]. Cell, 2014, 15:1-12.
[24] Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152:1173-1183.
[25] Kimura Y, Hisano Y, Kawahara A, et al. Efficient generation of knock-in transgenic zebrafish carrying reporter/driwer genes by CRISPR/Cas9-medeated genome engineering[J]. Scientific Reports, 2014, 6545:1-7.
[26] Dong ZJ, Dong XH, Jia WS. Improving the efficiency for generation of genome-edited zebrafish by labeling primordial germ cells[J]. Biochem Cell Biol, 2014, 5:329-334.
[27] Taghon T, Thys K, De Smedt M, et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell
progenitors:implications for human T-cell development. [J]. Leukemia, 2003, 17:1157-1163. |