生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 286-296.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1031
罗义1(), 张丽娟2,3, 黄伟2, 王宁2, 吾尔丽卡·买提哈斯木4, 施宠1(), 王玮2()
收稿日期:
2022-08-23
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
施宠,女,博士,副教授,研究方向:环境微生物;E-mail: shichong98@163.com作者简介:
罗义,女,硕士研究生,研究方向:环境微生物;E-mail: 651335178@qq.com
基金资助:
LUO Yi1(), ZHANG Li-juan2,3, HUANG Wei2, WANG Ning2, Wuerlika MAITIHASEM4, SHI Chong1(), WANG Wei2()
Received:
2022-08-23
Published:
2023-05-26
Online:
2023-06-08
摘要:
从退役铀矿区土壤中筛选获得耐铀促生菌株,为铀污染土壤的微生物-植物联合修复技术提供优良菌种资源,以解决退役铀矿区污染治理问题。梯度稀释某退役铀矿区污染土壤,涂布含铀培养基,分离筛选出一株具有耐铀性能菌株B2。通过形态学观察、生理生化实验及16S rDNA序列比较分析,对其进行初步鉴定。采用分光光度法测定菌株在铀胁迫下的生长曲线和培养基铀含量,分析其耐铀能力和铀吸附或吸收能力。通过平板法测定其固氮、解磷、产纤维素酶、合成铁载体能力。用Salkowski比色法测定其产吲哚乙酸(3-indole acetic acid, IAA)能力及产量。通过种子萌发和盆栽实验,验证该菌株的促生能力。综合形态观察结果、生理生化特征和基于16S rDNA序列的进化分析,确定菌株B2为微枝形杆菌属细菌(Microvirga makkahensis sp.),在铀浓度为0-400 mg/L时,其生长曲线符合S型生长曲线模型,当铀浓度达到600 mg/L后生长受抑制,其对培养基中的铀无吸附或吸收作用。菌株B2具有固氮、解磷、产纤维素酶、合成铁载体和产IAA的促生特性,培养48 h后IAA产量可达到24.39 μg/mL。菌株B2可显著提高上海青(Brassica chinensis L.)种子的发芽率,促进幼苗的生长发育,显著增加上海青生物量。菌株B2为一株具有产IAA等促生能力、耐铀的微枝形杆菌属细菌,能有效促进上海青种子萌发和幼苗生长,可作为微生物-植物联合修复铀污染土壤的候选菌株。
罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296.
LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties[J]. Biotechnology Bulletin, 2023, 39(5): 286-296.
生化特征Biochemical characteristics | B2 | Microvirga makkahensis SV1470T[ | M. lupini Lut6T[ | M. aerophila DSM 21344T[ | M. flavescens c27j1T[ |
---|---|---|---|---|---|
菌株来源Source of strain | 土壤 | 土壤 | 根瘤 | 空气 | 土壤 |
培养基Medium | 在NA、R2A、LB生长良好 | 在改良的Bennett's、察氏、NA、ISP2、YMA、Rauff、R2A生长良好 | 在1/2LA、YMA、TY、NA生长良好 | 在R2A、NA生长良好,在TSA、2216E不生长 | 在R2A、PYE生长良好,在TSA、NA不生长 |
菌落颜色Color of colony | 浅粉色 | 浅粉色 | 淡橙色 | 浅粉色 | 淡黄色 |
革兰氏染色Gram stain | G- | G- | G- | G- | G- |
细胞形状Cell shape | 棒状 | 棒状 | 棒状 | 棒状 | 棒状 |
好氧性试验 Aerobic test | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 |
产孢子Producing spores | - | - | - | - | - |
运动性Motility | - | + | - | - | + |
细胞长×细胞宽Cell length(μm)× Cell width(μm) | (1.1-1.9)×(0.5-0.7) | (1.0-1.6)×(0.8-1.3) | (1.0-2.2)×(0.4-0.5) | (1.6-4.2)×(0.8-1.1) | (1.8-4.2)×(0.4-0.7) |
细胞色素氧化酶 Cytochrome oxidase | + | / | - | + | + |
过氧化氢酶Oxidase | + | + | - | + | + |
产吲哚Producing indoles | + | / | w | - | - |
产H2S Producing hydrogen sulphide | - | / | - | / | / |
明胶液化Hydrolysis of gelatin | + | + | - | - | - |
硝酸盐还原Nitrate reduction | + | - | - | - | + |
柠檬酸盐利用Citrate utilization | + | / | - | / | / |
脲酶Urease | - | - | + | - | - |
淀粉酶Amylase | / | - | - | + | - |
β-半乳糖苷酶 β-galactosidase | - | / | - | - | / |
精氨酸双水介酶Arginine hydrophilic enzyme | - | + | - | - | - |
表1 菌株B2的生理生化特征
Table1 Physiological characteristics of strain B2
生化特征Biochemical characteristics | B2 | Microvirga makkahensis SV1470T[ | M. lupini Lut6T[ | M. aerophila DSM 21344T[ | M. flavescens c27j1T[ |
---|---|---|---|---|---|
菌株来源Source of strain | 土壤 | 土壤 | 根瘤 | 空气 | 土壤 |
培养基Medium | 在NA、R2A、LB生长良好 | 在改良的Bennett's、察氏、NA、ISP2、YMA、Rauff、R2A生长良好 | 在1/2LA、YMA、TY、NA生长良好 | 在R2A、NA生长良好,在TSA、2216E不生长 | 在R2A、PYE生长良好,在TSA、NA不生长 |
菌落颜色Color of colony | 浅粉色 | 浅粉色 | 淡橙色 | 浅粉色 | 淡黄色 |
革兰氏染色Gram stain | G- | G- | G- | G- | G- |
细胞形状Cell shape | 棒状 | 棒状 | 棒状 | 棒状 | 棒状 |
好氧性试验 Aerobic test | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 | 严格好氧 |
产孢子Producing spores | - | - | - | - | - |
运动性Motility | - | + | - | - | + |
细胞长×细胞宽Cell length(μm)× Cell width(μm) | (1.1-1.9)×(0.5-0.7) | (1.0-1.6)×(0.8-1.3) | (1.0-2.2)×(0.4-0.5) | (1.6-4.2)×(0.8-1.1) | (1.8-4.2)×(0.4-0.7) |
细胞色素氧化酶 Cytochrome oxidase | + | / | - | + | + |
过氧化氢酶Oxidase | + | + | - | + | + |
产吲哚Producing indoles | + | / | w | - | - |
产H2S Producing hydrogen sulphide | - | / | - | / | / |
明胶液化Hydrolysis of gelatin | + | + | - | - | - |
硝酸盐还原Nitrate reduction | + | - | - | - | + |
柠檬酸盐利用Citrate utilization | + | / | - | / | / |
脲酶Urease | - | - | + | - | - |
淀粉酶Amylase | / | - | - | + | - |
β-半乳糖苷酶 β-galactosidase | - | / | - | - | / |
精氨酸双水介酶Arginine hydrophilic enzyme | - | + | - | - | - |
图2 基于菌株B2 16S rDNA 序列采用邻接法构建的系统发育树 分支上的数值表示采用Neighbor-joining方法构建系统发育树时,1 000次计算时形成该节点的百分比;括号中序号为GenBank登录号;分支点上的数字代表Bootstrap值;标尺0.010 0代表1%的核苷酸差异
Fig. 2 Phylogenetic tree reconstructed by the neighbor-joining method, based on the 16S rDNA sequence of strain B2 The value on the branch indicates the percentage of the node formed in 1 000 calculations when the neighbor-joining method is used to construct the phylogenetic tree. Numbers in parentheses are the GenBank accession numbers. Numbers at the nodes indicate the Bootstrap value. The scale bar indicates 1% nucleotide substitution
图4 不同培养基中菌株B2的IAA产量 不同小写字母表示差异显著(P < 0.05)
Fig. 4 IAA production by strain B2 in different media Different lower letters indicate significant differnce(P < 0.05)
图5 菌株B2处理后对上海青种子生长影响 A:菌株B2对上海青发芽势和发芽率的影响;B:菌株B2对上海青发芽指数和活力指数的影响;C:菌株B2处理后对上海青根长和芽长的影响。*P < 0.05,**P < 0.01,下同
Fig. 5 Effects of strain B2 on the seed growth of B. chine-nsis L. A: Effects of strain B2 on germination potential and percentage of B. chinensis L. B: Effects of strain B2 on germination index and vitality index of B. chinensis L.. C: Effect of strain B2 on root and bud length of B. chinensis L. * P < 0.05, and ** P < 0.01. The same below
处理Treatment | 株高Plant height/cm | 根长Root length/cm | 茎粗Stem thickness/mm | 叶片数Number of leaves | 叶宽Leaf width/cm | 叶长Leaf length/cm | 鲜重Fresh weight | 干重 Dry weight | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上Above ground/g | 地下Underground/g | 地上Above ground/g | 地下Underground/g | |||||||||
CK | 13.68±1.38 | 12.12±2.45 | 3.50±0.50 | 4.40±0.89 | 3.38±0.69 | 5.51±1.16 | 2.53±0.94 | 0.44±0.25 | 0.38±0.16 | 0.09±0.02 | ||
B2 | 17.35±0.97** | 18.70±4.51* | 5.25±0.50** | 6.75±0.50** | 5.23±0.59** | 7.58±1.19** | 9.23±2.54** | 2.40±0.75** | 0.86±0.12** | 0.28±0.07** |
表2 菌株B2处理对上海青生长性状的影响
Table 2 Effects of strain B2 treatment on growth traits of B. chinensis L.
处理Treatment | 株高Plant height/cm | 根长Root length/cm | 茎粗Stem thickness/mm | 叶片数Number of leaves | 叶宽Leaf width/cm | 叶长Leaf length/cm | 鲜重Fresh weight | 干重 Dry weight | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上Above ground/g | 地下Underground/g | 地上Above ground/g | 地下Underground/g | |||||||||
CK | 13.68±1.38 | 12.12±2.45 | 3.50±0.50 | 4.40±0.89 | 3.38±0.69 | 5.51±1.16 | 2.53±0.94 | 0.44±0.25 | 0.38±0.16 | 0.09±0.02 | ||
B2 | 17.35±0.97** | 18.70±4.51* | 5.25±0.50** | 6.75±0.50** | 5.23±0.59** | 7.58±1.19** | 9.23±2.54** | 2.40±0.75** | 0.86±0.12** | 0.28±0.07** |
[1] |
Wei GL, Han WH, Shu XY, et al. Heavy-ion irradiation effects on uranium-contaminated soil for nuclear waste[J]. J Hazard Mater, 2021, 405: 124273.
doi: 10.1016/j.jhazmat.2020.124273 URL |
[2] |
Cheng CH, Chen LY, Guo KX, et al. Progress of uranium-contaminated soil bioremediation technology[J]. J Environ Radioact, 2022, 241: 106773.
doi: 10.1016/j.jenvrad.2021.106773 URL |
[3] | 钟娟, 刘兴宇, 张明江, 等. 铀污染的微生物修复技术研究进展[J]. 稀有金属, 2021, 45(1): 93-105. |
Zhong J, Liu XY, Zhang MJ, et al. Research progress of bioremediation technology for uranium contamination[J]. Chin J Rare Met, 2021, 45(1): 93-105. | |
[4] | Li XL, Ding CC, Liao JL, et al. Microbial reduction of uranium(VI)by Bacillus sp. dwc-2: a macroscopic and spectroscopic study[J]. J Environ Sci(China), 2017, 53: 9-15. |
[5] |
Liang XJ, Csetenyi L, Gadd GM. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates[J]. Appl Microbiol Biotechnol, 2016, 100(11): 5141-5151.
doi: 10.1007/s00253-016-7327-9 pmid: 26846744 |
[6] | 梁朱明. 超富集植物体微生物减容减重应用基础研究[D]. 绵阳: 西南科技大学, 2020. |
Liang ZM. Basic research on the applation of microorganism in volume and weight reduction of hyperconcentration plants[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
[7] |
Yuan Y, Liu N, Dai Y, et al. Effective biosorption of uranium from aqueous solution by cyanobacterium Anabaena flos-aquae[J]. Environ Sci Pollut Res Int, 2020, 27(35): 44306-44313.
doi: 10.1007/s11356-020-10364-4 |
[8] |
Chen L, Liu JR, Zhang WX, et al. Uranium(U)source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review[J]. J Hazard Mater, 2021, 413: 125319.
doi: 10.1016/j.jhazmat.2021.125319 URL |
[9] |
Zheng XY, Shen YH, Wang XY, et al. Effect of pH on uranium(VI)biosorption and biomineralization by Saccharomyces cerevisiae[J]. Chemosphere, 2018, 203: 109-116.
doi: S0045-6535(18)30588-5 pmid: 29614403 |
[10] |
杨晓玫, 冯起, 吕丹彤, 等. 植物根际促生菌Bacillus mycoides Gnyt1菌株生物学特性比较研究[J]. 草地学报, 2022, 30(3): 553-559.
doi: 10.11733/j.issn.1007-0435.2022.03.006 |
Yang XM, Feng Q, Lyu DT, et al. Comparative study on the biological characteristics of plant rhizosphere growth-promoting bacteria Bacillus mycoides Gnyt1[J]. Acta Agrestia Sin, 2022, 30(3): 553-559. | |
[11] |
Ke T, Guo GY, Liu JR, et al. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains[J]. Environ Pollut, 2021, 271: 116314.
doi: 10.1016/j.envpol.2020.116314 URL |
[12] |
亓琳, 杨莹博, 张博, 等. 丛枝菌根真菌强化高粱幼苗修复锶污染土壤的研究[J]. 草业学报, 2018, 27(12): 103-112.
doi: 10.11686/cyxb2018333 |
Qi L, Yang YB, Zhang B, et al. Arbuscular mycorrhizal fungi(AMF)enhance phytoremediation of strontium-contaminated soil by Sorghum bicolor seedlings[J]. Acta Prataculturae Sin, 2018, 27(12): 103-112. | |
[13] |
王焯, 罗学刚, 丁翰林, 等. 一种耐铀植物促生菌的筛选及促生特性研究[J]. 生物技术通报, 2019, 35(1): 42-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0577 |
Wang Z, Luo XG, Ding HL, et al. Isolation and identification of a uranium-resistant strain and effect of its characteristics on growth promoting[J]. Biotechnol Bull, 2019, 35(1): 42-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0577 |
|
[14] |
Bhakat K, Chakraborty A, Islam E. Characterization of arsenic oxidation and uranium bioremediation potential of arsenic resistant bacteria isolated from uranium ore[J]. Environ Sci Pollut Res Int, 2019, 26(13): 12907-12919.
doi: 10.1007/s11356-019-04827-6 |
[15] | 蒋小梅. 土著微生物菌群的选育及除铀效能试验研究[D]. 衡阳: 南华大学, 2018. |
Jiang XM. The selection and effectiveness studies to uranium of native microbial consortium[D]. Hengyang: University of South China, 2018. | |
[16] | 胡南, 陈思羽, 胡劲松, 等. 一株耐铀镉真菌菌株的筛选及其耐铀镉特性的研究[J]. 南华大学学报: 自然科学版, 2019, 33(2): 16-21. |
Hunan, Chen SY, Hu JS, et al. Screening of a uranium-cadmium tolerant fungal strain and its uranium-cadmium tolerance[J]. J Univ South China Sci Technol, 2019, 33(2): 16-21. | |
[17] | 张健, 宋晗, 邓洪, 等. 铀与微生物相互作用研究进展[J]. 矿物岩石地球化学通报, 2018, 37(1): 55-62, 158. |
Zhang J, Song H, Deng H, et al. Research progress on interaction between uranium and microorganism[J]. Bull Mineral Petrol Geochem, 2018, 37(1): 55-62, 158. | |
[18] | 张远科. 纤维素酶产生菌的筛选、产酶特性及酶基因克隆表达[D]. 株洲: 湖南工业大学, 2022. |
Zhang YK. Screening, enzyme production characteristics, and gene cloning and expression of cellulase-producing strain[D]. Zhuzhou: Hunan University of Technology, 2022. | |
[19] | 周贝贝. 植物根际促生菌的筛选及其在草莓上的应用研究[D]. 泰安: 山东农业大学, 2018. |
Zhou BB. Screening of plant growth-promoting rhizobacteria and its application in strawberry[D]. Tai'an: Shandong Agricultural University, 2018. | |
[20] | 王君. 蓝莓根际促生细菌的筛选、鉴定及其促生效果[D]. 泰安: 山东农业大学, 2016. |
Wang J. Screening, identification and growth-promoting effects of PGPR from blueberry rhizosphere[D]. Tai'an: Shandong Agricultural University, 2016. | |
[21] |
Yong P, Eccles H, Macaskie LE. Determination of uranium, thorium and lanthanum in mixed solutions using simultaneous spectrophotometry[J]. Anal Chimica Acta, 1996, 329(1/2): 173-179.
doi: 10.1016/0003-2670(96)00101-8 URL |
[22] | 杜浪, 李玉香, 马雪, 等. 偶氮胂Ⅲ分光光度法测定微量铀[J]. 冶金分析, 2015, 35(1): 68-71. |
Du L, Li YX, Ma X, et al. Determination of micro uranium by arsenazo Ⅲ spectrophotometry[J]. Metall Anal, 2015, 35(1): 68-71. | |
[23] | 张垚, 张芝, 王志刚, 等. 辣椒根际促生菌筛选鉴定及其促生效应初探[J]. 浙江农业科学, 2022, 63(5): 958-963. |
Zhang Y, Zhang Z, Wang ZG, et al. Screening, identification of growth-promoting rhizobacteria in pepper and preliminary study on its promoting effect[J]. J Zhejiang Agric Sci, 2022, 63(5): 958-963. | |
[24] | 张凯晔. 田菁种子内生菌的分离及其促生功能研究[D]. 太谷: 山西农业大学, 2020. |
Zhang KY. Isolation of endophytes from Sesbania cannabina and plant growth-promoting characteristics of endophyte[D]. Taigu: Shanxi Agricultural University, 2020. | |
[25] | 李柯, 施宠, 王文全, 等. 重金属Pb胁迫下内生真菌侵染对德兰臭草种子萌发及生长的影响[J]. 农业资源与环境学报, 2020, 37(2): 280-286. |
Li K, Shi C, Wang WQ, et al. Seed germination and growth effects of endophyte infection on Melica transsilvanica under Pb stress[J]. J Agric Resour Environ, 2020, 37(2): 280-286. | |
[26] |
Veyisoglu A, Tatar D, Saygin H, et al. Microvirga makkahensis sp. nov., and Microvirga arabica sp. nov., isolated from sandy arid soil[J]. Antonie Van Leeuwenhoek, 2016, 109(2): 287-296.
doi: 10.1007/s10482-015-0631-z pmid: 26671415 |
[27] |
Ardley JK, Parker MA, de Meyer SE, et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts[J]. Int J Syst Evol Microbiol, 2012, 62(Pt 11): 2579-2588.
doi: 10.1099/ijs.0.035097-0 URL |
[28] |
Weon HY, Kwon SW, Son JA, et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga[J]. Int J Syst Evol Microbiol, 2010, 60(Pt 11): 2596-2600.
doi: 10.1099/ijs.0.018770-0 URL |
[29] |
Zhang XJ, Zhang J, Yao Q, et al. Microvirga flavescens sp. nov., a novel bacterium isolated from forest soil and emended description of the genus Microvirga[J]. Int J Syst Evol Microbiol, 2019, 69(3): 667-671.
doi: 10.1099/ijsem.0.003189 URL |
[30] |
Pramanik K, Mitra S, Sarkar A, et al. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092[J]. J Hazard Mater, 2018, 351: 317-329.
doi: 10.1016/j.jhazmat.2018.03.009 URL |
[31] |
Tapase SR, Kodam KM. Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment[J]. Chemosphere, 2018, 195: 1-10.
doi: 10.1016/j.chemosphere.2017.12.022 URL |
[32] | 刘清, 徐伟昌, 招国栋, 等. 铀和铅对枯草杆菌毒性的研究[J]. 环境污染与防治, 2007, 29(4): 247-249, 253. |
Liu Q, Xu WC, Zhao GD, et al. Toxic effects of uranium and lead to B. subtilis[J]. Environ Pollut & Control, 2007, 29(4): 247-249, 253. | |
[33] | 郭俊, 潘虎, 张晓明, 等. 微生物耐受重金属的作用机制[J]. 东北农业科学, 2023, 48(1):136-139. |
Guo J, Pan H, Zhang XM, et al. Advance on mechanisms for heavy metals tolerance of microorganisms[J]. J Northeast Agric Sci, 2023, 48(1):136-139. | |
[34] |
Liu ZT, Xian WD, Li MM, et al. Microvirga arsenatis sp. nov., an arsenate reduction bacterium isolated from Tibet hot spring sediments[J]. Antonie Van Leeuwenhoek, 2020, 113(8): 1147-1153.
doi: 10.1007/s10482-020-01421-6 |
[35] |
Mouad L, Hanane L, Omar B, et al. Nodulation of Retama species by members of the genus Microvirga in Morocco[J]. Symbiosis, 2020, 82(3): 249-258.
doi: 10.1007/s13199-020-00725-5 |
[36] |
Jiménez-Gómez A, Saati-Santamaría Z, Igual JM, et al. Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential[J]. Microorganisms, 2019, 7(9): 354.
doi: 10.3390/microorganisms7090354 URL |
[37] |
李福艳, 刘晓玉, 颜静婷, 等. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884.
doi: 10.3969/j.issn.1004-1524.2021.05.13 |
Li FY, Liu XY, Yan JT, et al. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects[J]. Acta Agric Zhejiangensis, 2021, 33(5): 873-884. | |
[38] |
Bruno LB, Anbuganesan V, Karthik C, et al. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus[J]. J Environ Manage, 2021, 289: 112553.
doi: 10.1016/j.jenvman.2021.112553 URL |
[39] |
Pal AK, Sengupta C. Isolation of cadmium and lead tolerant plant growth promoting rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian agricultural soil[J]. Soil Sediment Contam Int J, 2019, 28(7): 601-629.
doi: 10.1080/15320383.2019.1637398 URL |
[40] |
Gheidary S, Akhzari D, Pessarakli M. Effects of salinity, drought, and priming treatments on seed germination and growth parameters of Lathyrus sativus L[J]. J Plant Nutr, 2017, 40(10): 1507-1514.
doi: 10.1080/01904167.2016.1269349 URL |
[41] | 赵继武. 土壤—植物系统中铀生物有效性和迁移模型的研究[D]. 绵阳: 西南科技大学, 2020. |
Zhao JW. Study on uranium bioavailability and migration model in soil-plant system[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
[42] |
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, et al. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria(PGPR)[J]. Biology, 2021, 10(6): 475.
doi: 10.3390/biology10060475 URL |
[43] | 黄一绥, 邱健斌, 佘晨兴, 等. 土壤重金属污染对上海青根伸长的抑制效应研究[J]. 热带作物学报, 2011, 32(11): 2133-2137. |
Huang YS, Qiu JB, She CX, et al. Influence of soil heavy metal pollution on the root elongation of Brassica rapa L[J]. Chin J Trop Crops, 2011, 32(11): 2133-2137. |
[1] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[2] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[3] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[4] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[5] | 高亚慧, 姜明国, 丰景, 周桂. 产生促生挥发性物质的潜在PGPR菌株筛选及其促生特性研究[J]. 生物技术通报, 2022, 38(3): 103-112. |
[6] | 李兵娟, 郑璐, 沈仁芳, 兰平. 拟南芥RPP1A参与幼苗生长的蛋白质组学分析[J]. 生物技术通报, 2022, 38(2): 10-20. |
[7] | 莫黎杰, 刘夏瞳, 李慧, 陆海. 植物半胱氨酸蛋白酶在植物生长发育中的功能研究[J]. 生物技术通报, 2021, 37(6): 202-212. |
[8] | 李昕悦, 张金方, 徐小健, 路福平, 李玉. 芽胞形成相关基因缺失对解淀粉芽胞杆菌生物量及胞外酶表达的影响[J]. 生物技术通报, 2021, 37(3): 35-43. |
[9] | 潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87. |
[10] | 雷海英, 赵青松, 杨潇, 王毛毛, 白洁, 孙永琪, 王志军. 苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J]. 生物技术通报, 2020, 36(9): 157-166. |
[11] | 纪超, 王晓辉, 刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J]. 生物技术通报, 2020, 36(4): 131-143. |
[12] | 朱建峰, 杨秀艳, 武海雯, 张华新. 植物种子萌发期耐盐碱性提高技术研究进展[J]. 生物技术通报, 2020, 36(2): 158-168. |
[13] | 李桂玲, 王琦, 王金水, 贾峰. 重金属对植物种子萌发胁迫及缓解的机制[J]. 生物技术通报, 2019, 35(6): 147-155. |
[14] | 张丹, 王楠, 李超, 谢旗, 唐三元. 甜高粱——一种优质的饲料作物[J]. 生物技术通报, 2019, 35(5): 2-8. |
[15] | 张靖洁, 段露露, 程蔚兰, 季春丽, 崔红利, 李润植. 菌藻共生提高小球藻生物量和产油率[J]. 生物技术通报, 2019, 35(5): 76-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||