生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 264-273.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0501
孙卓(), 王妍, 韩忠明(), 王云贺(), 赵淑杰, 杨利民
收稿日期:
2022-04-22
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
孙卓,男,博士,讲师,研究方向:药用植物保护及病害防治;E-mail: 基金资助:
SUN Zhuo(), WANG Yan, HAN Zhong-ming(), WANG Yun-he(), ZHAO Shu-jie, YANG Li-min
Received:
2022-04-22
Published:
2023-01-26
Online:
2023-02-02
摘要:
作为世界性分布的镰刀属常见病原真菌,尖孢镰刀菌(Fusarium oxysporum)和木贼镰刀菌(F. equiseti)对包括经济作物及药用植物等的生长均有较大危害。利用源自于植物根际土壤的有益微生物防控尖孢镰刀菌和木贼镰刀菌引起的真菌性病害,是目前较为理想的植物病害管理策略。为获得可有效抑制尖孢镰刀菌和木贼镰刀菌的生防菌源,于防风根际土壤中分离纯化真菌104株,基于平板对峙法筛选获得1株对尖孢镰刀菌和木贼镰刀菌具有显著抑制效果的菌株MR-43,结合形态特征、ITS序列分析,将其确定为Sirastachys castanedae(GenBank登录号:OK287148.1),隶属于Sirastachys组进化分支,发现其可宿生于植物根际土壤。基于盆栽试验法,探究MR-43在防风栽培土壤中的定殖能力,评价MR-43对由尖孢镰刀菌引起的防风枯萎病和由木贼镰刀菌引起的防风根腐病的防病能力,及其对防风植株的促生能力。结果显示,Sirastachys castanedae MR-43对尖孢镰刀菌、木贼镰刀菌的抑菌率为57%以上,且经多次验证抑菌效果稳定;菌株MR-43可稳定定殖于防风栽培土壤并实现有效扩繁;菌株MR-43的孢子悬液可有效控制防风枯萎病和防风根腐病,平均防效达68.52%,与多菌灵、代森锰锌的防病效果无显著性差异(P>0.05);此外,MR-43对防风植株生长具有明显促进作用。因此,Sirastachys castanedae MR-43在防风枯萎病、根腐病等真菌性病害管理方面具有较好的开发价值及应用潜力。
孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273.
SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata[J]. Biotechnology Bulletin, 2023, 39(1): 264-273.
代表值 Representative value | 分级标准Grading standard | |
---|---|---|
枯萎病Fusarium wilt | 根腐病 Root rot | |
0级 | 植株健康,无枯萎症状 | 健株,无病斑 |
1 级 | 植株10%以下叶片发黄 | 全株10%以下的叶片发病 |
3 级 | 11%-25%叶片萎蔫发黄,开始下垂 | 全株11%-25%的叶片发病 |
5 级 | 26%-50%叶片枯萎发黄,开始脱落 | 全株26%-50%的叶片发病 |
7 级 | 植株茎秆瘦弱稀疏,51%-75%叶片发黄,并大量脱落 | 全株51%-75%的叶片发病 |
9 级 | 全株萎蔫发黄,整体脱落,严重枯死 | 全株76%以上的叶片发病 |
表1 防风枯萎病和根腐病发病程度分级标准
Table 1 Disease grading standard of Fusarium wilt and root rot of S. divaricata
代表值 Representative value | 分级标准Grading standard | |
---|---|---|
枯萎病Fusarium wilt | 根腐病 Root rot | |
0级 | 植株健康,无枯萎症状 | 健株,无病斑 |
1 级 | 植株10%以下叶片发黄 | 全株10%以下的叶片发病 |
3 级 | 11%-25%叶片萎蔫发黄,开始下垂 | 全株11%-25%的叶片发病 |
5 级 | 26%-50%叶片枯萎发黄,开始脱落 | 全株26%-50%的叶片发病 |
7 级 | 植株茎秆瘦弱稀疏,51%-75%叶片发黄,并大量脱落 | 全株51%-75%的叶片发病 |
9 级 | 全株萎蔫发黄,整体脱落,严重枯死 | 全株76%以上的叶片发病 |
序号No. | 尖孢镰刀菌F. oxysporum/% | 木贼镰刀菌F. equiseti/% |
---|---|---|
MR-43 | 59.63±2.22 a | 57.04±0.19 c |
MR-38 | 56.30±1.28 b | 23.89±0.19 d |
MR-34 | 32.16±1.70 c | 56.67±0.32 c |
MR-24 | 22.36±0.92 d | 61.85±0.31 a |
MR-68 | 14.49±0.78 e | 55.19±0.40 c |
MR-37 | 11.55±0.82 f | 57.78±0.26 bc |
MR-70 | 9.91±2.31 f | 60.00±0.35 ab |
表2 根际真菌对防风病原真菌的抑制作用
Table 2 Antifungal activities of selected rhizospheric fungi against fungal pathogens of S. divaricata
序号No. | 尖孢镰刀菌F. oxysporum/% | 木贼镰刀菌F. equiseti/% |
---|---|---|
MR-43 | 59.63±2.22 a | 57.04±0.19 c |
MR-38 | 56.30±1.28 b | 23.89±0.19 d |
MR-34 | 32.16±1.70 c | 56.67±0.32 c |
MR-24 | 22.36±0.92 d | 61.85±0.31 a |
MR-68 | 14.49±0.78 e | 55.19±0.40 c |
MR-37 | 11.55±0.82 f | 57.78±0.26 bc |
MR-70 | 9.91±2.31 f | 60.00±0.35 ab |
图1 菌株MR-43对尖孢镰刀菌、木贼镰刀菌生长的影响 A:尖孢镰刀菌纯培养;B:尖孢镰刀菌与MR-43共培养;C:木贼镰刀菌纯培养;D:木贼镰刀菌与MR-43共培养
Fig. 1 Effects of MR-43 on F. oxysporum and F. equiseti during the dual culture assay A: F. oxysporum. B: F. oxysporum with MR-43 during the dual culture. C: F. equiseti.D: F. equiseti with MR-43 during the dual culture
图2 菌株MR-43菌落形态及显微形态特征 A:菌落正面;B:菌落背面;C:分生孢子;D, E:分生孢子梗;F:产孢瓶体。基准刻度:C-E=10 μm;F=5 μm
Fig. 2 Microscopic morphology characteristics and the colony morphology of strain MR-43 isolate A: Front of colony. B: Back of colony. C: Conidias. D and E: Conidiophores.F: Stipes. Scale bars: C-E =10 μm. F = 5 μm
不同处理 Treatment | 枯萎病Fusarium wilt | 根腐病Root rot | ||||
---|---|---|---|---|---|---|
病情指数Disease incidence | 防病效果Disease control/% | 病情指数Disease incidence | 防病效果Disease control/% | |||
A | 13.55±2.23 c | 73.21±2.36 a | 22.66±2.18 c | 63.83±2.36 a | ||
B | 16.00±3.11 bc | 68.37±3.30 ab | 23.44±2.11 c | 63.44±3.30 a | ||
C | 22.18±3.72 b | 56.15±5.35 c | 32.07±3.66 b | 49.99±3.35 b | ||
D | 19.59±2.28 bc | 61.27±4.51 b | 30.85±3.29 b | 51.89±2.70 b | ||
CK | 50.59±4.29 a | — | 64.14±2.18 a | — |
表3 MR-43孢子悬液对防风真菌性病害的防效
Table 3 Control effect of the MR-43 spore suspension on fungal disease of S. divaricata
不同处理 Treatment | 枯萎病Fusarium wilt | 根腐病Root rot | ||||
---|---|---|---|---|---|---|
病情指数Disease incidence | 防病效果Disease control/% | 病情指数Disease incidence | 防病效果Disease control/% | |||
A | 13.55±2.23 c | 73.21±2.36 a | 22.66±2.18 c | 63.83±2.36 a | ||
B | 16.00±3.11 bc | 68.37±3.30 ab | 23.44±2.11 c | 63.44±3.30 a | ||
C | 22.18±3.72 b | 56.15±5.35 c | 32.07±3.66 b | 49.99±3.35 b | ||
D | 19.59±2.28 bc | 61.27±4.51 b | 30.85±3.29 b | 51.89±2.70 b | ||
CK | 50.59±4.29 a | — | 64.14±2.18 a | — |
图5 MR-43对防风根腐病、枯萎病的防控效果 CK:清水处理;A:哈茨木霉;B:枯草芽孢杆菌;C:50%多菌灵可湿性粉或70%代森锰锌可湿性粉剂;D:MR-43
Fig. 5 Biocontrol effects of MR-43 against the root rot and Fusarium wilt disease of S. divaricata CK: Untreated control(water). A: T. harzianum. B: B. subtilis. C: Carbendazim 50% WP or Mancozeb 70% WP. D: MR-43
不同处理 Treatment | 整株长度 Plant length/cm | 根长 Root length/cm | 整株鲜重 Plant fresh weight/g | 根鲜重 Root fresh weight/g | 整株干重 Plant dry weight/g | 根干重 Root dry weight/g |
---|---|---|---|---|---|---|
A | 55.73±3.52 a | 29.44±3.42 a | 8.21±0.40 a | 3.88±0.51 a | 2.56±0.67 a | 1.32±0.30 a |
B | 51.63±3.58 b | 29.34±2.15 a | 7.66±1.62 a | 3.04±0.47 b | 2.49±0.97 a | 1.04±0.30 b |
C | 51.35±4.14 b | 28.63±2.84 a | 7.89±1.98 a | 3.10±0.39 b | 2.54±1.01 a | 1.06±0.25 b |
CK | 50.85±3.21 b | 28.11±2.03 a | 6.44±1.37 b | 2.28±0.81 c | 1.92±0.60 b | 0.85±0.18 c |
表4 MR-43对防风植株的促生效果
Table 4 Effects of MR-43 on the promoting growth of S. divaricata
不同处理 Treatment | 整株长度 Plant length/cm | 根长 Root length/cm | 整株鲜重 Plant fresh weight/g | 根鲜重 Root fresh weight/g | 整株干重 Plant dry weight/g | 根干重 Root dry weight/g |
---|---|---|---|---|---|---|
A | 55.73±3.52 a | 29.44±3.42 a | 8.21±0.40 a | 3.88±0.51 a | 2.56±0.67 a | 1.32±0.30 a |
B | 51.63±3.58 b | 29.34±2.15 a | 7.66±1.62 a | 3.04±0.47 b | 2.49±0.97 a | 1.04±0.30 b |
C | 51.35±4.14 b | 28.63±2.84 a | 7.89±1.98 a | 3.10±0.39 b | 2.54±1.01 a | 1.06±0.25 b |
CK | 50.85±3.21 b | 28.11±2.03 a | 6.44±1.37 b | 2.28±0.81 c | 1.92±0.60 b | 0.85±0.18 c |
[1] |
Li XP, Xu SY, Zhang JG, et al. Assembly and annotation of whole-genome sequence of Fusarium equiseti[J]. Genomics, 2021, 113(4): 2870-2876.
doi: 10.1016/j.ygeno.2021.06.019 URL |
[2] |
Michielse CB, Rep M. Pathogen profile update: Fusarium oxysporum[J]. Mol Plant Pathol, 2009, 10(3): 311-324.
doi: 10.1111/j.1364-3703.2009.00538.x pmid: 19400835 |
[3] | Sheh ML, Pu FT, Pan ZH, et al. Flora of China Illustrations. Vol. 14 Apiaceae(Umbelliferae)[M]. Beijing: Science Press, 2005. |
[4] | 曾令祥. 药用植物病虫害[M]. 贵阳: 贵州科技出版社, 2017. |
Zeng LX. Diseases and insect pests of medicinal plants[M]. Guiyang: Guizhou Science and Technology Press, 2017. | |
[5] |
Lecomte C, Alabouvette C, Edel-Hermann V, et al. Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review[J]. Biol Control, 2016, 101: 17-30.
doi: 10.1016/j.biocontrol.2016.06.004 URL |
[6] |
Xi XD, Fan JL, Yang XY, et al. Evaluation of the anti-oomycete bioactivity of rhizosphere soil-borne isolates and the biocontrol of soybean root rot caused by Phytophthora sojae[J]. Biol Control, 2022, 166: 104818.
doi: 10.1016/j.biocontrol.2021.104818 URL |
[7] |
Feng HC, Fu RX, Hou XQ, et al. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root-microbe rhizosphere interactions[J]. Int J Mol Sci, 2021, 22(13): 6655.
doi: 10.3390/ijms22136655 URL |
[8] |
付严松, 李宇聪, 徐志辉, 等. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0997 |
Fu YS, Li YC, Xu ZH, et al. Research progressing in signals and molecular mechanisms of plant growth-promoting rhizobacteria to regulate plant root development[J]. Biotechnol Bull, 2020, 36(9): 42-48. | |
[9] | 高游慧, 郑泽慧, 张越, 等. 根际微生态防治作物土传真菌病害的机制研究进展[J]. 中国农业大学学报, 2021, 26(6): 100-113. |
Gao YH, Zheng ZH, Zhang Y, et al. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: a review[J]. J China Agric Univ, 2021, 26(6): 100-113. | |
[10] |
Kumawat KC, Razdan N, Saharan K. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives[J]. Microbiol Res, 2022, 254: 126901.
doi: 10.1016/j.micres.2021.126901 URL |
[11] |
Philippot L, Raaijmakers JM, Lemanceau P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nat Rev Microbiol, 2013, 11(11): 789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930 |
[12] |
杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
Yang M, Gao T, Li YJ, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnol Bull, 2020, 36(5): 104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
|
[13] |
Khalil MMR, Fierro-Coronado RA, Peñuelas-Rubio O, et al. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato[J]. Saudi J Biol Sci, 2021, 28(12): 7460-7471.
doi: 10.1016/j.sjbs.2021.08.043 URL |
[14] |
de Azevedo Silva F, de Oliveira Vieira V, Correia da Silva R, et al. Introduction of Trichoderma spp. biocontrol strains against Sclerotinia sclerotiorum(Lib.)de Bary change soil microbial community composition in common bean(Phaseolus vulgaris L.)cultivation[J]. Biol Control, 2021, 163: 104755.
doi: 10.1016/j.biocontrol.2021.104755 URL |
[15] |
Samaras A, Karaoglanidis GS, Tzelepis G. Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host[J]. Microbiol Res, 2021, 248: 126752.
doi: 10.1016/j.micres.2021.126752 URL |
[16] |
Asad SA. Mechanisms of action and biocontrol potential of Trich-oderma against fungal plant diseases - A review[J]. Ecol Complex, 2022, 49: 100978.
doi: 10.1016/j.ecocom.2021.100978 URL |
[17] | Malloch D. Moulds: their isolation, cultivation and identification[M]. Toronto: University of Toronto Press, 1982. |
[18] | Costa D, Tavares RM, Baptista P, et al. Cork oak endophytic fungi as potential biocontrol agents against Biscogniauxia mediterranea and Diplodia corticola[J]. J Fungi(Basel), 2020, 6(4): 287. |
[19] |
Bell D, Wells HD, Markham C. In vitro antagonism of Trichoderma species against six fungal plant pathogens[J]. Phytopathology, 1982, 72: 379-382.
doi: 10.1094/Phyto-72-379 URL |
[20] | Domsch KH, Gams W, Anderson TH. Compendium of soil fungi(Second edition)[M]. Eching: IHW-verlag, 2007. |
[21] | 杨蕾, 周国英, 梁军, 等. 防治杨树溃疡病内生菌的分离筛选及鉴定[J]. 植物保护学报, 2014, 41(4): 438-446. |
Yang L, Zhou GY, Liang J, et al. Isolation, screening and identification of the endogenous microorganisms antagonizing poplar canker[J]. J Plant Prot, 2014, 41(4): 438-446. | |
[22] |
Liu QL, Chen SF. Two novel species of Calonectria isolated from soil in a natural forest in China[J]. MycoKeys, 2017, 26: 25-60.
doi: 10.3897/mycokeys.26.14688 URL |
[23] |
Gholami M, Amini J, Abdollahzadeh J, et al. Basidiomycetes fungi as biocontrol agents against take-all disease of wheat[J]. Biol Control, 2019, 130: 34-43.
doi: 10.1016/j.biocontrol.2018.12.012 URL |
[24] |
Jarvis BB. Stachybotrys chartarum: a fungus for our time[J]. Phytochemistry, 2003, 64(1): 53-60.
pmid: 12946405 |
[25] | Hintikka EL. The role of Stachybotrys in the phenomenon known as sick building syndrome[J]. Adv Appl Microbiol, 2004, 55: 155-173. |
[26] |
Terr AI. Stachybotrys: relevance to human disease[J]. Ann Allergy Asthma Immunol, 2001, 87(6 Suppl 3): 57-63.
doi: 10.1016/S1081-1206(10)62343-5 URL |
[27] |
Tweddell RJ, Jabaji-Hare SH, Charest PM. Production of chitinases and beta-1, 3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani[J]. Appl Environ Microbiol, 1994, 60(2): 489-495.
doi: 10.1128/aem.60.2.489-495.1994 URL |
[28] | 翟妮平, 李光宇, 徐超, 等. 河南山坡土壤中三种葡萄穗霉科真菌鉴定[J]. 土壤通报, 2019, 50(4): 878-884. |
Zhai NP, Li GY, Xu C, et al. Identification of three species of Stachybotryaceae in the soil of mountain slope in Henan[J]. Chin J Soil Sci, 2019, 50(4): 878-884. | |
[29] | Tennakoon DS, Kuo CH, Maharachchikumbura SSN, et al. Taxonomic and phylogenetic contributions to Celtis Formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi[J]. Fungal Divers, 2021, 108(1): 1-215. |
[30] |
Lombard L, Houbraken J, Decock C, et al. Generic hyper-diversity in Stachybotriaceae[J]. Persoonia, 2016, 36: 156-246.
doi: 10.3767/003158516X691582 pmid: 27616791 |
[31] | 张晓锋. 冀豫鄂湘地区土壤中虫生真菌资源调查与活性研究[D]. 广州: 华南农业大学, 2019. |
Zhang XF. Isolation, identification and bioactivity of entomogenous fungi in soils of Hunan, Hubei, Henan and Hebei provinces, China[D]. Guangzhou: South China Agricultural University, 2019. | |
[32] |
Kepler RM, Maul JE, Rehner SA. Managing the plant microbiome for biocontrol fungi: examples from Hypocreales[J]. Curr Opin Microbiol, 2017, 37: 48-53.
doi: S1369-5274(16)30159-X pmid: 28441534 |
[33] |
Xian HQ, Liu L, Li YH, et al. Molecular tagging of biocontrol fungus Trichoderma asperellum and its colonization in soil[J]. J Appl Microbiol, 2020, 128(1): 255-264.
doi: 10.1111/jam.14457 pmid: 31541488 |
[34] | 李兴龙, 李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3): 204-212. |
Li XL, Li YZ. Research advances in biological control of soil-borne disease[J]. Acta Prataculturae Sin, 2015, 24(3): 204-212. | |
[35] | 蒋志强, 郭坚华. 生防菌对土壤微生态影响的风险评估[J]. 微生物学杂志, 2006, 26(1): 85-88. |
Jiang ZQ, Guo JH. Hazard analysis of the impact of bio-controlling microbes on soil micro-ecosystem[J]. J Microbiol, 2006, 26(1): 85-88. | |
[36] | 马超, 龚鑫, 郜红建, 等. 历史因素对土壤微生物群落与外来细菌入侵间关系的影响[J]. 生态学报, 2018, 38(22): 7933-7941. |
Ma C, Gong X, Gao HJ, et al. Legacy impacts on the relationships between soil microbial community and the invasion potential of non-indigenous bacteria[J]. Acta Ecol Sin, 2018, 38(22): 7933-7941. |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[4] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[5] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[6] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[7] | 徐重新, 仲建锋, 高美静, 卢莉娜, 刘贤金, 沈燕. 植物内生菌在食用农产品质量安全与营养品质调控中的研究进展[J]. 生物技术通报, 2022, 38(5): 215-227. |
[8] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[9] | 高亚慧, 姜明国, 丰景, 周桂. 产生促生挥发性物质的潜在PGPR菌株筛选及其促生特性研究[J]. 生物技术通报, 2022, 38(3): 103-112. |
[10] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
[11] | 陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9): 14-24. |
[12] | 孙雨, 常晶晶, 田春杰. 作物根际微生物组重组构建技术体系探讨[J]. 生物技术通报, 2020, 36(9): 25-30. |
[13] | 潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87. |
[14] | 许来鹏, 万鲜花, 孙向丽, 曹艳芳, 李慧, 田亚东, 刘小军, 康相涛, 王彦彬. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9): 137-146. |
[15] | 雷海英, 赵青松, 杨潇, 王毛毛, 白洁, 孙永琪, 王志军. 苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J]. 生物技术通报, 2020, 36(9): 157-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||