生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 266-276.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1522
收稿日期:
2022-12-16
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
屈建航,女,博士,教授,研究方向:环境微生物学;E-mail: qjh_bata@163.com作者简介:
袁野,女,硕士研究生,研究方向:环境微生物;E-mail: 274607228@qq.com
基金资助:
YUAN Ye(), ZHOU Jia, QU Jian-hang(), ZHANG Bo-yuan, LUO Yu, LI Hai-feng
Received:
2022-12-16
Published:
2023-07-26
Online:
2023-08-17
摘要:
筛选高效反硝化聚磷菌,探究其脱氮除磷条件及对模拟废水的处理性能。纯培养技术分离反硝化聚磷菌;基于16S rRNA基因序列分析和生理生化特征,完成菌株D4的初步鉴定;通过单因素和响应面法优化脱氮除磷条件,并应用于食品模拟废水的生物脱氮除磷。反硝化聚磷细菌D4为戈登氏菌(Gordonia sp.),脱氮除磷的最佳条件为乙酸钠(3.32 g/L)作碳源、接种量5%、初始磷含量18.61 mg/L、31.3℃、pH 7.9,该条件下菌株D4对总磷、硝氮和氨氮的去除量分别为14.18、39.67和69.71 mg/L,相应去除率为84.50%、97.67%和96.22%;应用于不同模拟废水的结果显示,菌株D4对多种废水均具有良好的脱氮除磷效果,其中对豆制品废水中的氮磷去除效果最好,脱氮量和除磷量分别达101.58 mg/L和10.40 mg/L。戈登氏菌D4具有较好的反硝化聚磷能力,是豆制品废水等高氮高磷类食品加工废水生物脱氮除磷的良好菌种资源。
袁野, 周佳, 屈建航, 张博源, 罗宇, 李海峰. 高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究[J]. 生物技术通报, 2023, 39(7): 266-276.
YUAN Ye, ZHOU Jia, QU Jian-hang, ZHANG Bo-yuan, LUO Yu, LI Hai-feng. Screening of an Efficient Denitrifying Phosphorus-accumulating Bacterium and Its Denitrification and Phosphorus Removal[J]. Biotechnology Bulletin, 2023, 39(7): 266-276.
因素代码 Code of factor | 因素 Factor | 水平Level | |||
---|---|---|---|---|---|
1 | 0 | 1 | |||
A | 温度 Temperature/℃ | 20 | 28 | 34 | |
B | pH | 7 | 8 | 9 | |
C | 初始磷含量Initial phosphorus content/(mg·L-1) | 10 | 15 | 20 |
表1 反硝化聚磷菌三因素三水平表
Table 1 Three factors and three levels of denitrifying phosphorus-accumulating bacteria
因素代码 Code of factor | 因素 Factor | 水平Level | |||
---|---|---|---|---|---|
1 | 0 | 1 | |||
A | 温度 Temperature/℃ | 20 | 28 | 34 | |
B | pH | 7 | 8 | 9 | |
C | 初始磷含量Initial phosphorus content/(mg·L-1) | 10 | 15 | 20 |
图1 菌株D4的16S rRNA基因系统发育树 括号内为菌株GenBank登录号;分支节点数字为Bootstrap值(低于70不显示);标尺的数据为进化距离
Fig. 1 Phylogenetic tree based on the 16S rRNA genes of strain D4 Code in parentheses is GenBank accession number of strain.The number of branch nodes is bootstrap value(That of lower than 70 is not displayed). The data of the scale is the evolutionary distance
图3 碳源及碳源浓度对菌株D4脱氮除磷效率的影响 不同小写字母表示在P<0.05水平差异显著。下同
Fig. 3 Effects of carbon sources and carbon source concentration on the nitrogen and phosphorus removal efficiency of strain D4 Different lower letters indicate significant difference at P<0.05 level. The same below
因素Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | 显著性Significance |
---|---|---|---|---|---|
碳源Carbon source | 143.696 | 4 | 35.924 | 376.090 | 0.000** |
乙酸钠浓度Sodium acetate concentration | 43.381 | 4 | 10.845 | 583.658 | 0.000** |
接种量Vaccination percent | 0.064 | 4 | 0.016 | 0.535 | 0.714 |
初始磷含量Initial phosphorus content | 49.980 | 4 | 12.495 | 114.939 | 0.000** |
温度Temperature | 75.747 | 4 | 18.937 | 288.322 | 0.000** |
pH | 150.384 | 4 | 37.593 | 1492.194 | 0.000** |
表2 显著性分析结果
Table 2 Significance analysis results
因素Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | 显著性Significance |
---|---|---|---|---|---|
碳源Carbon source | 143.696 | 4 | 35.924 | 376.090 | 0.000** |
乙酸钠浓度Sodium acetate concentration | 43.381 | 4 | 10.845 | 583.658 | 0.000** |
接种量Vaccination percent | 0.064 | 4 | 0.016 | 0.535 | 0.714 |
初始磷含量Initial phosphorus content | 49.980 | 4 | 12.495 | 114.939 | 0.000** |
温度Temperature | 75.747 | 4 | 18.937 | 288.322 | 0.000** |
pH | 150.384 | 4 | 37.593 | 1492.194 | 0.000** |
来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
模型 | 139.61 | 9 | 15.51 | 22.05 | 0.0002 | ** |
A | 15.89 | 1 | 15.89 | 22.59 | 0.0021 | ** |
B | 2.02 | 1 | 2.02 | 2.88 | 0.1337 | - |
C | 53.54 | 1 | 53.54 | 76.12 | < 0.0001 | ** |
AB | 2.52 | 1 | 2.52 | 3.58 | 0.1002 | - |
AC | 9.49 | 1 | 9.49 | 13.50 | 0.0079 | ** |
BC | 0.0038 | 1 | 0.0038 | 0.0055 | 0.9431 | - |
A2 | 13.90 | 1 | 13.90 | 19.75 | 0.0030 | ** |
B2 | 8.09 | 1 | 8.09 | 11.51 | 0.0116 | * |
C2 | 8.81 | 1 | 8.81 | 12.53 | 0.0095 | ** |
残值 | 4.92 | 7 | 0.7034 | |||
失拟项 | 3.68 | 3 | 1.23 | 3.96 | 0.1083 | - |
纯误差 | 1.24 | 4 | 0.3099 | |||
总计 | 144.54 | 16 |
表3 二次模型的方差分析
Table 3 Analysis of variance of quadratic model
来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
模型 | 139.61 | 9 | 15.51 | 22.05 | 0.0002 | ** |
A | 15.89 | 1 | 15.89 | 22.59 | 0.0021 | ** |
B | 2.02 | 1 | 2.02 | 2.88 | 0.1337 | - |
C | 53.54 | 1 | 53.54 | 76.12 | < 0.0001 | ** |
AB | 2.52 | 1 | 2.52 | 3.58 | 0.1002 | - |
AC | 9.49 | 1 | 9.49 | 13.50 | 0.0079 | ** |
BC | 0.0038 | 1 | 0.0038 | 0.0055 | 0.9431 | - |
A2 | 13.90 | 1 | 13.90 | 19.75 | 0.0030 | ** |
B2 | 8.09 | 1 | 8.09 | 11.51 | 0.0116 | * |
C2 | 8.81 | 1 | 8.81 | 12.53 | 0.0095 | ** |
残值 | 4.92 | 7 | 0.7034 | |||
失拟项 | 3.68 | 3 | 1.23 | 3.96 | 0.1083 | - |
纯误差 | 1.24 | 4 | 0.3099 | |||
总计 | 144.54 | 16 |
图8 各因素交互作用对总磷去除量的响应曲面图 a:温度和pH的交互作用图;b:温度和初始磷含量的交互作用图;c: pH和初始磷含量的交互作用图
Fig. 8 Response surface diagram of interaction of various factors on total phosphorus removal a: The interaction of temperature and pH; b: the interaction of temperature and initial phosphorus concentration; c: the interaction of pH and initial phosphorus concentration
图9 菌株D4对不同模拟废水中总磷(a)、总氮(b)、氨氮(c)的去除量
Fig. 9 Removed amount of total phosphorus (a), total nitrogen (b), ammonia nitrogen (c) in different simulated wastewater by bacterial strain D4
[1] |
Raud M, Tenno T, Jõgi E, et al. Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters[J]. Enzyme Microb Technol, 2012, 50(4-5): 221-226.
doi: 10.1016/j.enzmictec.2012.01.003 URL |
[2] | 刘强. 游离氨耦联溶解氧调控高氮豆制品废水脱氮探究[J]. 水处理技术, 2020, 46(1): 79-83. |
Liu Q. Research on nitrogen removal from high nitrogen soybean products wastewater by free ammonia coupled with dissolved oxygen[J]. Technol Water Treat, 2020, 46(1): 79-83. | |
[3] |
Yang B, Chen GH, Chen GH. Submerged membrane bioreactor in treatment of simulated restaurant wastewater[J]. Sep Purif Technol, 2012, 88: 184-190.
doi: 10.1016/j.seppur.2011.12.026 URL |
[4] | 张凯宁. 好氧颗粒污泥处理柠檬酸生产废水的工艺研究[D]. 无锡: 江南大学, 2021. |
Zhang KN. Process for treating citric acid production wastewater by aerobic granular sludge[D]. Wuxi: Jiangnan University, 2021. | |
[5] |
Schindler DW, Hecky RE, Findlay DL, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. Proc Natl Acad Sci USA, 2008, 105(32): 11254-11258.
doi: 10.1073/pnas.0805108105 pmid: 18667696 |
[6] |
Rout PR, Bhunia P, Dash RR. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal[J]. Bioresour Technol, 2017, 244: 484-495.
doi: 10.1016/j.biortech.2017.07.186 URL |
[7] |
Wan WJ, He DL, Xue ZJ. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15[J]. Ecol Eng, 2017, 99: 199-208.
doi: 10.1016/j.ecoleng.2016.11.030 URL |
[8] | Kuba T, Smolders G, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Sci Technol, 1993, 27(5/6): 241-252. |
[9] |
Wang B, Peng YZ, Guo YY, et al. Illumina miseq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process[J]. Bioresour Technol, 2016, 207: 118-125.
doi: 10.1016/j.biortech.2016.01.072 URL |
[10] |
Wang QK, He JZ. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Res, 2020, 185: 116300.
doi: 10.1016/j.watres.2020.116300 URL |
[11] |
Xu HY, Jin R, Zhang C, et al. Isolation and identification of an aerobic denitrifying phosphorus removing bacteria and analysis of the factors influencing denitrification and phosphorus removal[J]. Water Sci Technol, 2018, 78(11): 2288-2296.
doi: 10.2166/wst.2018.514 URL |
[12] |
Li HK, Liu H, Zeng QQ, et al. Isolation and appraisal of a non-fermentative bacterium, Delftia tsuruhatensis, as denitrifying phosphate-accumulating organism and optimal growth conditions[J]. J Water Process Eng, 2020, 36: 101296.
doi: 10.1016/j.jwpe.2020.101296 URL |
[13] |
Li BT, Jing FY, Wu DS, et al. Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19[J]. Bioresour Technol, 2021, 321: 124445.
doi: 10.1016/j.biortech.2020.124445 URL |
[14] |
Chen HJ, Zhou WZ, Zhu SN, et al. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification[J]. Bioresour Technol, 2021, 322: 124507.
doi: 10.1016/j.biortech.2020.124507 URL |
[15] |
Roy S, Nirakar P, Yong NGH, et al. Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter[J]. Water Res, 2021, 189: 116557.
doi: 10.1016/j.watres.2020.116557 URL |
[16] | 王春雷. 反硝化聚磷菌的筛选驯化及其脱氮除磷的效能研究[D]. 哈尔滨: 哈尔滨商业大学, 2020. |
Wang CL. Domestication and screening of denitrifying phosph ate accumulating bacteria and its efficiency of nitrogen and phosphorus removal[D]. Harbin: Harbin University of Commerce, 2020. | |
[17] |
Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water[J]. Appl Environ Microbiol, 1985, 49(1): 1-7.
doi: 10.1128/aem.49.1.1-7.1985 URL |
[18] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[19] |
Qu JH, Fu YH, Li XD, et al. Brevundimonas lutea sp. nov., isolated from lake sediment[J]. Int J Syst Evol Microbiol, 2019, 69(5): 1417-1422.
doi: 10.1099/ijsem.0.003330 URL |
[20] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[21] | Delegan Y, Valentovich L, Vetrova A, et al. Complete genome sequence of Gordonia sp. 135, a promising dibenzothiophene- and hydrocarbon-degrading strain[J]. Microbiol Resour Announc, 2020, 9(2): e01450-e01419. |
[22] | Istvan P, Ronen Z. Draft genome sequence of Gordonia sp. strain YY1, isolated from an explosive-contaminated environment[J]. Microbiol Resour Announc, 2020, 9(16): e00070-e00020. |
[23] |
Wang YY, Zhou S, Wang H, et al. Comparison of endogenous metabolism during long-term anaerobic starvation of nitrite/nitrate cultivated denitrifying phosphorus removal sludges[J]. Water Res, 2015, 68: 374-386.
pmid: 25462744 |
[24] |
Dai HL, Han T, Sun TS, et al. Nitrous oxide emission during denitrifying phosphorus removal process: a review on the mechanisms and influencing factors[J]. J Environ Manag, 2021, 278: 111561.
doi: 10.1016/j.jenvman.2020.111561 URL |
[25] |
Zhang MY, Pan LQ, Liu LP, et al. Phosphorus and nitrogen removal by a novel phosphate-accumulating organism, Arthrobacter sp. HHEP5 capable of heterotrophic nitrification-aerobic denitrification: safety assessment, removal characterization, mechanism exploration and wastewater treatment[J]. Bioresour Technol, 2020, 312: 123633.
doi: 10.1016/j.biortech.2020.123633 URL |
[26] |
Zhang Q, Chen X, Zhang ZY, et al. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment[J]. Bioresour Technol, 2020, 315: 123813.
doi: 10.1016/j.biortech.2020.123813 URL |
[27] | 孙理密, 翟纪学, 张德清, 等. 高氮磷有机食品废水处理工程实例分析[J]. 工业水处理, 2022, 42(1): 171-174. |
Sun LM, Zhai JX, Zhang DQ, et al. A treatment project case of organic food wastewater with high concentrations of nitrogen and phosphorus compounds[J]. Ind Water Treat, 2022, 42(1): 171-174. | |
[28] | 刘春晓, 朱守超, 陈华, 等. 气浮-ABR-生物接触氧化组合工艺处理豆制品废水[J]. 水处理技术, 2022, 48(1): 118-121, 125. |
Liu CX, Zhu SC, Chen H, et al. Treatment of soybean wastewater by a combined process of air flotation-ABR-biological contact oxidation[J]. Technol Water Treat, 2022, 48(1): 118-121, 125. | |
[29] |
聂毅磊, 贾纬, 曾艳兵, 等. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究[J]. 生物技术通报, 2017, 33(3): 116-121.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.017 URL |
Nie YL, Jia W, Zeng YB, et al. Screening and identification of two aerobic denitrifying phosphorusaccumulating strains, and denitrifying biological phosphorus removal[J]. Biotechnol Bull, 2017, 33(3): 116-121. | |
[30] | 靳茹. 高效好氧反硝化聚磷菌的分离鉴定及脱氮除磷影响因素分析[D]. 太原: 太原科技大学, 2018. |
Jin R. Isolation and identification of efficiently aerobic denitrifying phosphorus removing bacteria and analysis of the factors influencing denitrification and phosphorus removal[D]. Taiyuan: Taiyuan University of Science and Technology, 2018. |
[1] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[2] | 李思思, 张博源, 符运会, 周佳, 屈建航. 一株高效溶磷细菌的条件优化及其溶磷特性研究[J]. 生物技术通报, 2022, 38(12): 274-286. |
[3] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[4] | 段绪果, 张玉华, 黄婷婷, 丁乾, 栾舒越, 朱秋雨. 化学分子伴侣及诱导条件协同强化Thermotoga maritima α-葡聚糖磷酸化酶可溶性表达[J]. 生物技术通报, 2021, 37(8): 233-242. |
[5] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[6] | 周静, 黄文茂, 秦利军, 韩丽珍. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4): 116-126. |
[7] | 魏畅, 戚秀秀, 吴越, 刘晓丹, 王祎, 姜瑛, 柳海涛. 砂质潮土高效溶磷菌的筛选鉴定、条件优化及应用[J]. 生物技术通报, 2021, 37(4): 85-95. |
[8] | 王晓莉, 张文文, 吴庆, 曹云娥. 餐厨废弃物脱硫菌分离筛选与鉴定[J]. 生物技术通报, 2020, 36(8): 87-95. |
[9] | 吴婧, 聂彩娥, 朱媛媛, 黄薇, 马超, 姜瑛, 朱林, 郜红建. 一株兼具产IAA能力纤维素降解菌的筛选、鉴定及条件优化[J]. 生物技术通报, 2020, 36(12): 54-63. |
[10] | 徐洲, 范晨龙, 丁燏. 溶藻弧菌PepA蛋白原核表达载体的构建及其乙酰化鉴定[J]. 生物技术通报, 2020, 36(12): 75-81. |
[11] | 孙凯, 陈正杰, 汪登洋, 束茹玉, 吴吉, 韦凡. 固定化漆酶去除废水中双酚A[J]. 生物技术通报, 2020, 36(12): 188-198. |
[12] | 刘长荣, 张风丽, 李志勇. 固定化海洋脲酶制备及其在尿素废水处理中的应用[J]. 生物技术通报, 2019, 35(9): 75-82. |
[13] | 周恒, 姜芸, 许叶祥, 钱生辉, 缪莉. 一株海洋微小链霉菌群体感应抑制活性及培养条件的研究[J]. 生物技术通报, 2019, 35(10): 137-143. |
[14] | 徐珊 ,李任强 ,郑振华 ,张云 ,孙爱君 ,胡云峰. 红树林微生物DH-2胞外蛋白酶的性质及产酶条件优化[J]. 生物技术通报, 2018, 34(6): 120-127. |
[15] | 邓超, 杜秀娟, 黄涛, 郭英, 李炳学, 卜宁. 碳氮比对固氮菌株WN-F合成胞外多糖的影响[J]. 生物技术通报, 2018, 34(3): 194-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||